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Notations 

EHL Enzymatic Hydrolysis Lignin 

MP Melting Point 

BP Boiling Point 

AL Alkaline lignin 

GC Gas Chromatography 

MS Mass Spectrometry 

PLO Pyrolytic Lignin Oil 

HDO Hydrodeoxygenation oil 

LRCR Lignin-Rich Corncob Residue 

MW Molecular Weight 

LHV Lower Heating Value 

RON Research Octane Number 

CN Cetane Number 

Pvap Vapor pressure 

Tmelt Melting Temperature 

Tboil Boiling Temperature 

Hvap Enthalpy of vaporization 
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Summary 

Deliverable 6.1 is the first one in task 6.1, whose goal is to characterize the composition of the fuels 

derived from enzymatic hydrolysis lignin (EHL) and to define the associated molecular substitutes. The first 

step is to identify the most important chemical species that present in EHL-derived solvolysis oil though 

bibliographic study and by the experimental analysis using two-dimensional gas chromatography (GC-2D) 

of samples provided by the EHLCATHOL partners. The results of the characterization are of particular 

importance in the case of the biofuels in the EHLCATHOL project and will make it possible to define 

molecular substitutes, which represent the main families of chemical species (e.g. alcohols, ketones, esters, 

phenolic compounds and arenes) to study the combustion properties on solvolysis oil. 

This report provides general information on the lignins including EHL-derived solvolysis oils. In a first 

part, a general introduction on biomass valorization is given.  In a second part, a bibliographical review of 

the experimental studies on the valorization of lignin and EHL is presented. In the third part, a 

bibliographical study on EHL-derived fuels combustion properties (BP, MP, RON and CN…) is displayed. In 

a fourth part, a review on kinetic works related to the gas-phase reactions of the main oxygenated 

aromatics expected in the biofuel composition is presented. 
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1.  Introduction 

Population growth and industrial development are leading to a rapid increase in the consumption of 

traditional fossil fuels, which poses major energy problems. The processing technology of lignocellulosic 

materials is not yet fully established. Although much progress has been made, second generation 

biorefineries will have to face great challenges over the next decade to become a mature and competitive 

technology. 

Biomass is mainly composed of three polymers: cellulose, hemicellulose and lignin (1). Figure 1 

presents the structure of cellulose and hemicellulose (which are polysaccharides) as well as the aromatic 

monomers present in lignin. 

 
Figure 1: Components of lignocellulosic biomass (2). 

1.1. Cellulose 

Cellulose is composed of a linear polymer of glucose. It is the most abundant polysaccharide available 

on earth with a global stock of 100 billion tons. It is used in the paper/biorefinery industry and in the 

pharmaceutical field for additive synthesis. 

1.2. Hemicellulose 

Hemicellulose is composed of different monosaccharides such as hexoses and pentoses. The 

composition in hemicellulose is very variable depending on the sources of biomass. Figure 2 displays the 

main monosaccharides, which enters in the composition of hemicellulose (3). 
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         Figure 2: Representative monosaccharide molecules in hemicelluloses (3). 

1.3. Lignin 

    Lignin is mainly found in the cell wall of woody plants and accounts for about 15–30% of the total 

lignocellulosic biomass. It is linked to hemicellulose, which confers mechanical strength to the cell wall and 

by extension the plant as a whole. It is the most abundant aromatic polymer in nature and is used for 

production of aromatic chemicals (4,5) 

    As shown in Figure 3 and 4 lignin is a complex and amorphous compound made up of phenolic 

units, such as hydroxyphenyl (H unit), guaiacyl (G unit) and syringyl (unit S), linked in various ways (6). The 

composition of lignin differs according to the type of wood. For conifers, lignin consists almost exclusively 

of guaiacyl (G) units, whereas for hardwoods, lignin is formed by a large number of syringyl units (S) (7). 
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Figure 3: Example of the chemical structure of lignin (8). 

 

Figure 4 : Lignin structural units (9). 

Indeed, the valuation of inedible lignocellulosic biomass has been the subject of great interest because of 

its potential to replace fossil resources for production of high added-value products. This biomass is also a 

source of lignocellulosic bioethanol because it contains glucose units that, once extracted, can be 

transformed into ethanol by fermentation. 

The procedure of bioethanol production is mainly divided into four processes (see Figure 5): 

1) Pretreatment, where the cellulose and hemicellulose of the biomass are made accessible 

2) Enzymatic hydrolysis, where the biomass is converted into sugars 

3) Fermentation, where the alcohol is produced from C5 and C6 monomers and, finally distillation to 

produce a purified liquid fuel. 
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     The enzymatic hydrolysis or saccharification is one of the most critical factors in lignocellulosic biofuel 

production and represents one of the main technology development areas. However, enzymatic hydrolysis 

represents the second main operational cost, after the biomass production; in the second generation 

process (2G: the production of liquid biofuels from feedstocks not used for human consumption) it is ~25–

30% of the operational costs, whereas in first generation process (1G) it is below 3%.  

 

Figure 5: Lignocellulosic process converting the biomass into biofuels and coproducts. Process step for 

conversion of agricultural residues into ethanol. Source: (10). 

1.4. Enzymatic hydrolysis lignin 

Enzymatic hydrolysis lignin (EHL) is a by-product of the bioethanol production process (as described 

previously), which includes different steps (Figure 6). EHL has various active groups such as benzene rings, 

phenol hydroxyl and ether bonds (11). 

EHL is insoluble in water at neutral pH, reducing its application in industry (12). In order to increase 

its possible use, studies have been carried out to improve its characteristics, and in particular its solubility 

in water (13). 
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Figure 6: Schematic representation of the process of obtaining EHL 

EHL is the byproduct of the 2G bioethanol process, either as the lignin fractionated during enzymatic 

hydrolysis or as the fermentation residue. The extraction of lignin is done without using harsh chemicals, 

thus makes it possible to better preserve the chemical structure of EHL than in alkaline lignin, Kraft lignin, 

lingosulfonate or organosolv lignin, which are obtained by pulping processes. Table 1 summarizes the 

different types of lignin samples and how they are obtained. Table 2 shows the property differences 

between EHL and the alkaline lignin (AL) derived from alkaline pulp manufacturing processes. Moreover, 

EHL allow much greater flexibility in optimizing its characteristics desirable for specific applications than 

traditional pulping processed lignin. Although Kraft pulp-derived lignin are now much closer to the market, 

the potential volume of biorefinery lignins like EHL is one to two orders of magnitude higher in the near 

future, if sugar/bioethanol biorefinery concepts are fully realized (13). 

Table 1: Types of common lignin obtained from different process of biomass  

 

Type of Lignin Definition 

Kraft lignin 
Obtained from kraft pulp, which accounts for about 85% of the total lignin 

production in the world 

Organosolv lignin 
Extracted by Organosolv process, which uses numerous organic or aqueous 

solvent mixtures, such as methanol, ethanol, acetone, ethylene glycol 

Soda lignin Extracted from Bambusa Bambos using a Soda pulping process 

Alkaline lignin Derived from alkaline pulp manufacturing processes 

Enzymatic hydrolysis 

lignin (EHL) 

Lignin fractionated during enzymatic hydrolysis or as the fermentation 

residue of the 2G bioethanol process 
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Table 1: Property differences between EHL and AL 

Property EHL AL 

Molecular weight Lower than AL (14) Hundreds to millions (15) 

Actives groups Phenol hydroxyl, ether and ester 
bond, etc (11) 

Phenolic hydroxyl, alcohol hydroxyl, 
carboxyl, ether bond, etc (16) 

Purity Relatively high (17) Low (17) 

Non-saturation Relatively high (18) Low (18) 

 

         To conclude, EHL is a specific type of lignin with particular properties, which relatively differs from 

other types of lignin. Its chemical structure is relatively preserved due to the mild reaction conditions used 

in the bio process and this has a great impact on the composition of the bio-oil, which is produced from 

EHL. Note that the lignin type is not the only factor affecting the composition of the bio-oil: the way the 

lignin is processed (catalyst, solvent and reaction conditions/atmosphere) has also a huge impact of the 

final composition of the bio-oil. These points are addressed in the next section of the deliverable.  
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2.  Bibliographic review of experimental studies 
on the valorization of lignin and EHL to the 
production of bio-oils. 

Lignin has received a lot of attention in recent years as a sustainable precursor because it is a large 

renewable source of aromatics, naphthenes and phenolic compounds. Compounds from the use of lignin 

and EHL can also reduce our dependence on fossil fuel feedstocks in the chemical industry. 

The following section presents, literature studies on lignin upgrading and EHL to produce high 

performance fuel blends. 

2.1. Lignin valorization to biofuels  

The ability of lignin to break down into low molecular weight monomeric compounds has been 

studied extensively. The study of the different ways of exploiting lignin such as alkaline oxidation hydrolysis, 

alkaline fusion, alkaline demethylation, depolymerization, hydrogenolysis and pyrolysis, allows a better 

understanding of its use in the production of bio-oils.  

De Wild et al. (19) reported a two-step process for the production of cycloalkanes and alkanes 

involving pyrolytic depolymerization of two types of lignin (GRANIT and Alcell lignin) followed by 

hydrotreatment on a Ru/C catalyst. Product analysis was performed by 2D-GC, GC-MS, and elemental 

analysis to obtain information on the effect of the hydrotreatment reaction on the molecular composition 

of the materials. The continuous pyrolysis of the two lignins resulted in a Pyrolytic Lignin Oil (PLO) and 

Hydrodeoxygenation oil (HDO). The compounds present in these bio-oils are summarized in Figure 7 that 

collected from ref. (19). 

 

Figure 7: Compounds, structures and percentage by weight detected in PLO and HDO oil (19). 

Barta et al. (19) investigated the catalytic disassembly of an organosolv lignin using a Cu-doped porous 

metal oxide catalyst in supercritical methanol. The products obtained by this process are a complex mixture 
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composed mainly of monomeric substituted cyclohexyl derivatives with a significantly reduced oxygen 

content and a negligible aromatic compound one. These products can be further processed to produce 

liquid hydrocarbon fuels and additives.  

Subsequently, the Weckhuysen group (21) and Jongerius et al.  (22) reported on a two-step approach 

for the conversion of lignin into monomeric aromatic compounds. They demonstrated that the use of 

ethanol / water mixtures to dissolve the lignin significantly improved its solubility. They also observed that 

some of the monomers were ethoxylated and pointed out that this would reduce their tendency to 

repolymerize of formed monomers. 

Following this work, Huang et al. (23) studied the use of ethanol to depolymerize alkaline lignin 

produced by an alkaline pulp process. They obtained a yield of 23% by weight of aromatics at 300 ° C under 

an N2 atmosphere. Most of the aromatic products obtained are deoxygenated with various degrees of cyclic 

alkylation with methyl and / or ethyl groups. They also confirmed that a wide range of linear products 

(mainly alcohols and higher alkyl esters) can be formed in the presence of ethanol as a solvent, doing the 

same reaction without catalyst under similar conditions. The results of studying the effect of catalyst, 

solvent and reaction time are shown in Figure 8. CuMgAlOx catalyst exhibits excellent deoxygenation and 

low cycle hydrogenation activity. 
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Figure 8: Distribution of the products for different reactions: (a) blank reaction at 300°C for 4 hours in 

ethanol, (b) CuMgAlOx at 300°C for 4 hours in ethanol, (c) CuMgAlOx at 300°C for 4 hours in methanol, 

(d) CuMgAlOx at 300°C for 8 hours in ethanol (24). 

Li and coworkers (Ma et al. (22); Ma et al. (23); Chen et al. (26); Yan et al. (27), reported the 

depolymerization of Kraft lignin in ethanol with a number of Mo-based catalysts e.g., MoS2, Mo2C, 

NiMo/Al2O3, MoC1-x/Cu-MgAlOZ and Mo2N/Al2O3. Besides that, they confirmed that MoO3 catalyst is highly 

selective for the cleavage of C-O bonds and possesses excellent regeneration property via calcination for 

removing deposited carbon on catalyst support compared to other Mo-based catalysts. The 

depolymerization of lignin, aims to give chemicals of high value of low molecular weight with a maximum 

overall yield of the most abundant liquid products. They confirmed that ethanol is an effective solvent for 

the reaction, which degrades the Kraft lignin into a mixture of small molecules and molecular fragments of 

intermediate size with molecular weights of around 700–1400. The reaction without hydrogen in the initial 

gas phase preceded much more efficiently than that with hydrogen, proving that it has a negative effect 

on the formation of low molecular weight products. 

 Figure 9 displayed the nature of species obtained from the ethanolysis of Kraft lignin in supercritical 

ethanol over different molybdenum oxide samples (26). 

 



15 

 EHLCATHOL – 101006744 – D6.1 – Bibliographical study on EHL-derived fuels… 

  

 

 

a. 

 

 

 

b. 

 

 

 

c. d. 

 

 

 

 

 

 

Figure 9: Summary of quantified products obtained from the ethanolysis of Kraft lignin in supercritical 

ethanol over different molybdenum oxide samples: a. C6 alcohols; b. C8 and C10 Esters; c. Benzyl alcohols 

and d. Arenes (26). 

Huang et al. (27) investigated the role of Cu−Mg−Al mixed oxides in depolymerization of soda lignin 

in supercritical ethanol (Figure 10). This lignin is depolymerized and the products obtained are then 

converted by reactions of alkylation, hydrodeoxygenation and hydrogenation. To summarize, the proposed 

reaction network and the required active sites for lignin depolymerization in supercritical ethanol are 

shown schematically in Figure 10. The hydrogen produced by dehydrogenation reactions is involved in 

hydrogenolysis reactions of the chemical bonds in lignin and also to deoxygenate the monomeric and 

oligomeric products.  
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Figure 10: Proposed Reaction Network of Catalytic Depolymerization of Lignin in Ethanol over the 

CuMgAl(y) Catalysts (26). 

Chesi et al. (28) used Raney-Ni for the depolymerization of poplar lignin in isopropanol/H2O under an 

Ar atmosphere and obtained 12.9 wt % phenolic products and detected 0.8 wt % benzene ring saturated 

products.  

Van den Bosch et al. (30) also investigated the activity of 21 wt % Ni/Al2O3 for the depolymerization 

of birch wood lignin in methanol and found that the mass transport limitation of the support reduced the 

monomer yield. Figure 11 shows the proposed mechanism of cleavage of the solvolytic β-O-4 bond in 

methanol via an α-methoxylated β-O-4 intermediate.  The formation of units of coniferyl / sinapyl alcohol 

in the absence of Ni-Al2O3 implies the presence of a non-catalytic reduction step, suggesting that methanol 

acts as a hydrogen donor. Finally, the catalytic hydrogenation of unsaturated intermediates is crucial to 

avoid repolymerization into a condensed lignin product. 
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Figure 11: The mechanism of solvolytic β-O-4 bond cleavage in methanol through an α-methoxylated 

β-O-4 intermediate (30). 

Korányi et al. (31) reported for the first time a substantial synergy between CuMgAl-oxide catalyst 

and nickel (phosphide) catalysts in the depolymerization of lignin in supercritical ethanol under optimized 

conditions. They obtained the best overall performance by combining CuMgAlOx with Ni2P/SiO2, resulting 

in a yield of 53% by weight of lignin monomers. The most important aspect is that the Ni-based phases are 

involved in the hydrogenation of reactive intermediates released from lignin by the action of the CuMgAlOx 

catalyst. Such reactive intermediates contain aldehyde and olefinic groups, which are in involved in 

condensation reactions that decrease the lignin monomer yield. 

More recently, Tymchyshyn et al. (32) have prepared various catalysts supported on carbon and used 

them in the hydrotreatment of guaiacol as a model compound for lignin. The results indicated an 

improvement in the depolymerization of lignin, and the optimization study reveal that the initial 

temperature and pressure of hydrogen have a greater effect on the conversion of guaiacol than the 

reaction time. 

In order to selectively convert lignin to alkanes, Qin et al. (33) thought of using a highly efficient 

catalytic process by introducing Pt and Ni based catalysts. However, the hydrodeoxygenation (HDO) oil of 

lignin to arenes or alkanes involves the depolymerization and hydrogenation of the aromatic polymer as 

well as the subsequent deoxygenation of the phenolic groups. For this, they developed a very efficient 

catalytic process for the conversion of an unprecedented high concentration of lignin to stable cyclic 

alkanes by introducing Pt/HAP into Ni/ASA catalyst in a dodecane media (Figure 12). It was found that Ni 

/ASA catalyst, reached a yield of ca. 40.4% by weight of C3-C15 liquid alkane for a conversion of 25 g /L lignin 

in a one-pot process. 
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Figure 12: The strategy used for the conversion of high concentrated lignin to cyclic alkanes (33). 

To summarize, lignin break-down into low molecular weight monomeric compounds has been 

intensively studied. The composition of bio-oils formed from lignin is highly dependent on the feedstock 

but also process conditions, in particular the catalyst type and the solvent. Several studies pointed out that 

the monomers could repolymerize and that upgrading (e.g., catalytic hydrogenation) could solve this 

problem.  The major products obtained in the above-mentioned studies are presented in Table 3.  

Table 2: The main products obtained in the reported lignin studies 

Family Compounds 

Benzyl alcohols Phenol , Guaiacol ,  Syringyl, Catechol , Cresol , Toluene 

Alcohols Methanol, Ethanol, Butanol, Benzyl alcohol 

Esters Methyl methacrylate , Dibutyl phthalate, Methylpyruvate 

Arenes Benzene and Alkyl-benzenes 
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2.2. Enzymatic hydrolysis lignin valorization to biofuels  

In recent years, the growth of the bioethanol industry has made it possible to produce large quantities 

of EHL. But a large amount of this EHL is incinerated for on-site energy production. 

The following section presents literature studies on the conversion of EHL to produce high 

performance fuel blends, i.e., high heating value jet-fuel, high octane number gasoline and high cetane 

number diesel fuels. The reaction time, the solvent, the temperature, and the initial hydrogen pressure are 

the parameters studied as they have significant effects on the products resulting from the valorization of 

EHL. 

Wang et al. (34) studied the depolymerization of EHL in methanol at 240°C for 4 h with 3 MPa H2 and 

they obtained an aromatic monomer yield of 12.1% by weight. They used for earth-abundant Ni catalyst 

supported on activated carbon (Ni/AC). The used catalyst is easily collected from the reaction solution by 

an external magnet and reused up to six times without loss of catalytic reactivity, which offers an 

alternative to develop very efficient heterogeneous product catalysts. 

Bai et al. (35) investigated the depolymerization of lignin-rich corncob residue (LRCR, a kind of EHL) 

in supercritical ethanol on a NiMo alloy catalyst on a support of alumina (NiMo/Al). They examined the 

effect of reaction conditions on the depolymerization of LRCP, such as reaction temperature, initial 

hydrogen pressure, and solvent. They found that the highest overall aromatic yield, 255.4 mg/g of LRCR, is 

achieved at 320 °C for 7.5 h under 27.6 bar of hydrogen pressure in supercritical ethanol, and the LRCR was 

completely converted to aromatics efficiently without the formation of tar or char in the reactor and on 

the catalyst surface. Catalytic depolymerization of LRCR likely occurred as shown in Figure 13. A total of 17 

aromatic compounds were identified and specified as the main products. The structures of these identified 

molecules are shown in Figure 14. 

 

Figure 13: Possible Reaction Pathway for LRCR Depolymerization (35). 
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Figure 14: Identified molecular structures in liquid products from depolymerization of LRCR in 

supercritical ethanol (35). 

After that, Mai et al., (36) studied the conversion of EHL in supercritical ethanol over a WO3/γ-Al2O3 

Catalyst, at 320 °C for 8 h. As shown in Figure 15, besides depolymerized EHL products, two aliphatic 

compounds such as aromatic ethers/esters and alkyphenols, propionic ether and 3-butenylethyl ether 

were formed, which were confirmed to be formed from ethanol by a blank reaction (without EHL)). They 

also studied the depolymerization of EHL in supercritical methanol and isopropanol, the results of which 

showed that ethanol was the most efficient solvent. 
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Figure 15: Structures of identified molecules obtained from depolymerization of EHL over a WO3/γ-Al2O3 

at 320°C (36) 

More recently, Sang et al. (37) provided an effective new strategy for a better valorization of EHL, 

adjusting Ni microstructure to increase the number of active sites to improve its reactivity. Indeed, they 

prepared a number of unsupported nickel-based catalysts for the depolymerization of EHL in a batch 

reactor at 280°C for 6 h. They found that Ni (220H), which was prepared from the decomposition of nickel 

formate at 220°C in hydrogen, allowed the liquefaction of EHL and the highest monomer yield of 28.5%. 

This study showed that the different activities of the fabricated nickel-based catalysts on EHL can be caused 

by the different particle size of Ni, and the smaller the Ni particles, the higher the activity of the catalyst. 

Aromatic esters and para-propanol substituted phenols were the main detected products, as shown in 

Figure 16. 



22 

 EHLCATHOL – 101006744 – D6.1 – Bibliographical study on EHL-derived fuels… 

  

 

Figure 16: Structures of identified molecules obtained from depolymerization of EHL over an 

unsupported Nickel catalyst at 280°C (36). 

Later, Tymchyshyn et al. (38) investigated the reductive depolymerization of EHL in supercritical 

acetone and in the presence of a catalyst under a hydrogen atmosphere to obtain low molecular weight 

compounds. They chose acetone as the solvent because the aromatic components of EHL and the aliphatic 

compounds produced are expected to be soluble in acetone. The MoRu/AC catalyst produced a bio-oil at 

320°C with a substantially increased H/C ratio and <2 wt % solid residue, suggesting an excellent 

hydrogenation/hydrodeoxygenation activity of the MoRu/AC. The results show that the phenolic 

compounds are the main component in bio-oils produced. 

In the work planned by Aalto University and TU/e in the EHLCATOL project in order to convert 

completely the enzymatic hydrolysis lignin (EHL) via catalytic solvolysis for making high-valued fuel 

commodities like gasoline, jet fuel and diesel range molecules, fuel compatible solvents such as lower chain 

alcohols (from C1 to C4) and/or C6-C8 alkanes will be used. Moreover, highly efficient supported catalysts with 

low-cost non-noble metals like Ni, Mo, Fe and/or their alloys, will be utilized to enhance the molecules in 

gasoline, jet fuel and diesel ranges. The experiments will be performed in a ~50-100 mL batch reactor 

equipped with a magnetic stirrer, sampling lines, pressure gauge and heating mantle. The EHL experiments 

typically performed in presence of suitable solvents at the temperature range of 250-350oC with/without H2, 

N2 or Ar (with initial pressure of 2-0-4.0 MPa) for 3-6 h. Here is a list of solvents, which might be envisaged: 

 

- Water 

- Methanol 

- Ethanol 

- 1-Propanol 
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- iso-Propanol 

- 1-Butanol 

- 2-Butanol 

- iso-Butanol 

- tert-Butanol 

- Ethylene glycol 

- Glycerol 

- Acetone 

- Methyl ethyl ketone 

- Ethyl acetate 

- 1,4-dioxane 

- Tetrahydrofuran 

- Diethyl ether 

- Cyclohexane 

- n-Hexane 

- n-Dodecane 

 To summarize, the valorization of EHL through the formation of bio-oils has a great potential and 

benefits from the past researches on other types of lignins. The composition of EHL derived bio-oils is highly 

dependent on the process conditions like the catalyst, the solvent the temperature and reaction 

atmosphere. _For instance, working under hydrogen atmosphere enables to increase the H/C ratio through 

hydrogenation and hydrodeoxygenation processes.  

As far as the composition of the obtained biofuels is concerned, the oxygenated aromatics are always 

the most important fraction, but arenes should also be considered, as well as the remaining presence of 

the used solvents and the compounds, which might be derived from those solvents through the catalytic 

process (e.g., esters).  
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3.  Bibliographical study on EHL-derived fuels and 
their combustion properties 

This part covered the global properties of biofuel’s potential components: mainly oxygenated 

aromatics, arenes, which are previously described as lignin catalytic solvolysis products.  

The Molecular Weight (MV) and density are widely used in physics and chemistry; however, Lower 

Heating Value (LHV), Research Octane Number (RON) and Cetane Number (CN) are widely used in 

combustion characteristics:  

- LHV: Thermal energy released during combustion considering all products in their gas state, 

- RON: index characterizing self-ignition capacity of gasoline. Values are defined in respect of 

reference species: n-heptane (RON=0) and iso-octane (RON=100), 

- CN: index characterizing self-ignition capacity of diesel. Values are defined in respect of reference 

species: α-methylnaphthalene (RON=0) and n-cetane (RON=100). 

These data of surrogates may be interpolated to predict fundamental biofuel properties. The data 

shown in Tables 4, 6, 8, 10 are global quantities deduced directly from the species known formulas (MW, 

density, LHV) or data taken from literature (RON, CN), which will be used as a data base to develop 

theoretical and numerical tools for properties prediction in WP6.2. 

Phase change data (Tables 5, 7, 9, 11) are also needed to anticipate constraints during experiments, 

such vapor pressure (Pvap) or the phase change state parameters at ambient temperature and pressure, 

boiling temperature (Tboil), melting temperature (Tmelt) and the enthalpy of vaporization (Hvap). Globally, 

these parameters will help us to choose the suitable experimental conditions and to adapt our facilities in 

WP6.3 and WP6.4.  
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Table 4: Global properties of oxygenated aromatics. 

 MW 
g/mol 

Density (25°C) 
kg/m3 

LHV 
MJ/kg 

RON CN 

 Value Ref Value Ref Value Ref Value Ref Value Ref 

Guaiacol 124.1 (39,40) 1129 (41,42) 27.5 (41–44)   19 (41,42,45) 

Anisole 108.1 (39,40) 980 (39,42,46) 33.7 (41–44,46–50) 114 (41,42,47,48,51) 6 (41,45,52) 

Phenol 94.1 (39,40) 1065 (39,42) 31.3 (42)     

o-cresol 108.1 (39,40) 1028 (39) 32.71 (40,53)   75 (54) 

p-cresol 108.1 (39,40) 1140 (39,42) 29.6 (42) 153 (42) 75 (54) 

m-cresol 108.1 (39,40) 1030 (39) 32.81 (40,53)   75 (54) 

Catechol 100.1 (39,40) 13442 (55) 27.73 calc.     

Benzyl 
alcohol 

108.1 (38,39) 1041 (38) 34.55 (85)   29 (85) 

2-phenyl 
ethanol 

122.2 (39,41) 1017 (86) 35.0 
 

(41,42,44,57,58) 116 (43,44,48,57) 8 (48,54) 

1 LHV calculated from enthalpy of combustion 
2 density at 20°C 
3 LHV calculated from enthalpy of formation (enthalpy of formation calculated with Joback’s method (52)  

 

Table 5: Phase change data of oxygenated aromatics. 

 Tboil (1atm) 
K 

Tmelt (1 atm) 
K 

Pvap (25°C) 
bar 

Hvap (25°C) 
kJ/kg 

 Value Ref Value Ref Value Ref Value Ref 

Guaiacol 478 (41–44) 301 (40,42) 1.29 10-4 (39) 494.4 (39) 

Anisole 427 (39–42,44,48) 250 (40,42) 4.28 10-3 (39) 425.9 (39,40,47–49) 

Phenol 455 (39,40,42) 314 (40,42) 6.38 10-4 (39) 583.7 (39) 

o-cresol 464 (39,40) 304 (40) 4.88 10-4 (39) 508.9 (39) 

p-cresol 475 (39,40,42) 307 (40,42) 1.89 10-4 (39) 548.8 (39) 

m-cresol 475 (39,40) 284 (40) 2.74 10-4 (39) 526.4 (39) 

Catechol 519 (39,40) 377 (40) 3.57 10-6 (39) 696.2 (39) 

Benzyl alcohol 478 (38,39) 257 (39) 4.82 10-5 (38) 610.6 (38) 

2-phenyl ethanol 493 (39,57,58) 254 (39) 1.16 10-6 (93) 562.9 (41,44,57) 
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Table 6: Global properties of arenes. 

 MW 
g/mol 

Density (25°C) 
kg/m3 

LHV 
MJ/kg 

RON CN 

 Value Ref Value Ref Value Ref Value Ref Value Ref 

 
Toluene 

92.1 (39,40,56,57) 862 (39,56) 40.9 (41,43,57–
60) 

116 (41,42,47,61–
65) 

6 (41,45,47,63,66) 

p-xylene 106.2 (39,40,57) 849 (39,67) 41.5 (44,48,57–
60) 

121 (44,61,63,64) 6 (63,66) 

m-xylene 106.2 (39,40) 855 (39,67) 41.4 (59,60) 122 (44,63,64) 7 (63,66) 

o-xylene 106.2 (39,40) 870 (39,67) 41.4 (59,60) 113 (44,63,64) 8 (63,66) 

Styrene 104.2 (39,40) 901 (39) 41.5 (60)     

Ethyl 
benzene 

106.2 (39,40,57) 855 (39,67) 41.4 (57–60) 108 (41,57,58,61,63) 6 (63,66) 

1,2,3-tri 
methyl  

benzene 

120.2 (39,40) 891 (39,40) 41.21 (40) 110 (47,63,64) 10 (63,66) 

1,2,4-tri 
methyl 

benzene 

120.2 (39,40) 857 (39,40) 41.0 (59) 148 (64) 9 (47,63,66) 

1,3,5-tri 
methyl 

benzene 

120.2 (39,40) 842 (39,40) 41.21 (40) 138 (63,64) 8 (63,66) 

1,2-ethyl 
toluene 

120.2 (39,40) 877 (39,40) 41.31 (40) 101 (45,63)   

1,3-ethyl 
toluene 

120.2 (39,40) 860 (39,40) 41.31 (40) 102 (63)   

1,4-ethyl 
toluene 

120.2 (39,40) 857 (39,40) 41.31 (40) 102 (63)   

1,2-
diethyl 

benzene 

134.2 (39,40) 876 (39,40) 41.61 (40)     

1,3-
diethyl 

benzene 

134.2 (39,40) 860 (39,40) 41.61 (40) 103 (63) 5 (66) 

1,4-
diethyl 

benzene 

134.2 (39,40) 875 (39,40) 41.61 (40) 103 (45,63)   

2-
propenyl 
benzene 

118.2 (40) 892 (40) 42.01 (40)     

2-ethyl 
1,4-

dimethyl 
benzene 

134.2 (39,40) 873 (39,40) 41.51 (40) 104 (45,63)   

1-ethyl 
2,4-

dimethyl 
benzene 

134.2 (39,40) 872 (39,40) 41.51 (40) 101 (63)   

1 LHV calculated from enthalpy of combustion. 
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Table 7: Phase change data of arenes. 

 Tboil (1atm) 
K 

Tmelt (1 atm) 
K 

Pvap (25°C) 
bar 

Hvap (25°C) 
kJ/kg 

 Value Ref Value Ref Value Ref Value Ref 

Toluene 383 (39–41,44) 178 (40) 3.73 10-2 (39,40) 408.0 (39,40,57,58) 

p-xylene 411 (39,40,48) 286 (40) 1.13 10-2 (39,40) 396.9 (39,40,48,57,58) 

m-xylene 412 (39,40) 225 (40) 1.07 10-2 (39,40) 398.1 (39) 

o-xylene 417 (39,40) 248 (40) 8.58 10-3 (39,40) 403.6 (39) 

Styrene 419 (39,40) 240 (40) 9.91 10-3 (39) 403.5 (39) 

Ethyl benzene 409 (39,40) 179 (40) 1.25 10-2 (39) 413.2 (40,57,58) 

1,2,3-tri methyl benzene 449 (39,40) 248 (40) 1.84 10-3 (39) 404.0 (39) 

1,2,4-tri methyl benzene 442 (39,40) 228 (40) 2.49 10-3 (39) 395.4 (39) 

1,3,5-tri methyl benzene 438 (39,40) 226 (40) 2.85 10-3 (39) 394.1 (39) 

1,2-ethyl toluene 438 (39,40) 190 (40) 2.38 10-3 (39) 366.3 (39) 

1,3-ethyl toluene 435 (39,40) 176 (40) 4.70 10-3 (39) 379.8 (39) 

1,4-ethyl toluene 435 (39,40) 210 (40) 4.45 10-3 (39) 368.3 (39) 

1,2-diethyl benzene 456 (39,40) 242 (40) 1.40 10-3 (39) 355.3 (39) 

1,3-diethyl benzene 454 (39,40) 189 (40) 1.51 10-3 (39) 355.2 (39) 

1,4-diethyl benzene 457 (39,40) 230 (40) 1.29 10-3 (39) 369.9 (39) 

2-propenyl benzene 429 (40) 233 (40) 4.76 10-3 (68) 391.3 (68) 

2-ethyl 1,4-dimethyl benzene 460 (39,40) 219 (40) 1.26 10-3 (39) 376.1 (39) 

1-ethyl 2,4-dimethyl benzene 462 (39,40) 210 (40) 1.19 10-3 (39) 378.7 (39) 

 

Table 8: Global properties of proposed solvents. 

 MW 
g/mol 

Density (25°C) 
kg/m3 

LHV 
MJ/kg 

RON CN 

 Value Ref Value Ref Value Ref Value Ref Value Ref 

Methanol 32.0 (39,40) 787 (39) 20.3 (47,59,60,69,70) 110 (44,45,47,71) 3 (66) 

Ethanol 46.1 (39,40,4
9,50,57) 

800 (39) 27.3 (41,47–50,57–
60,69,70,72,73) 

109 (41,44,45,47,49,
49,57,58,63,71,

72) 

9 (50,66,70,74) 

1-propanol 60.1 (39,40) 805 (39) 30.7 (47,73) 103 (45,47) 12 (66) 

Iso-propanol 60.1 (39,40) 787 (39) 30.7 (47) 108 (45,47,75) 12 (76) 

1-butanol 74.1 (39,40) 794 (39) 33.2 (47,70,77,78) 99 (45,47,71,75,77
) 

17 (45,47,66,70,76,
77) 

2-butanol 74.1 (39,40) 811 (39) 33.1 (47) 107 (45,47,71,75) 9 (45) 

Iso-butanol 74.1 (39,40) 793 (39) 33.2 (47,77) 109 (45,47,75,77) 9 (45,47) 

Tert-butanol 74.1 (39,40) 761 (39) 32.6 (77) 105 (45,77)   

Ethylene glycol 62.1 (39,40) 1110 (39) 19.2 (40)     

Acetone 58.1 (39,40) 785 (39) 28.9 (59,78,79) 108 (75) 53 (80) 

Methyl ethyl 
ketone 

72.1 (39,40) 795 (39) 31.4 (47,81) 109 (45,47,71,75)   

Ethyl acetate 88.1 (39,40) 895 (39) 23.8 (47,49) 118 (47,49,71)   

1,4-dioxane 88.1 (39,40) 1029 (39) 25.01 (40)     

Tetrahydrofuran 72.1 (39,40) 880 (39) 34.7 (40) 73 (45) 24 (45,82) 

Diethyl ether 74.1 (39,40) 716 (39) 33.9 (70,83,84)   141 (66,70,74,83) 

Cyclohexane 84.2 (39,40) 767 (39) 44.5 (60) 83 (45,47,63) 16 (45,47,63,66) 

n-hexane 86.2 (39,40) 656 (39) 45.4 (60,72) 29 (45,47,72,75) 48 (45,47,63,66,85
) 

n-dodecane 170.3 (39,40) 750 (39) 44.6 (72)   79 (45,47,63,66,85,
86) 

1 LHV calculated from enthalpy of combustion 
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Table 9: Phase change data of proposed solvents. 

 Tboil (1atm) 
K 

Tmelt (1 atm) 
K 

Pvap (25°C) 
bar 

Hvap (25°C) 
kJ/kg 

 Value Ref Value Ref Value Ref Value Ref 

Methanol 338 (39,40) 176 (40) 1.69 10-1 (39,40) 1193.3 (39,40,47) 

Ethanol 352 (39,40,48,50) 159 (40) 7.69 10-2 (39,40) 921.6 (39,40,47–49,57,58) 

1-propanol 370 (39,40) 147 (40) 2.80 10-2 (39,40) 774.3 (39,40,47) 

Iso-propanol 355 (39,40) 186 (40) 5.80 10-2 (39) 735.2 (39,40,47) 

1-butanol 391 (39,40) 188 (40) 8.98 10-3 (39,40) 682.9 (39,40,47) 

2-butanol 372 (39,40) 158 (87,88) 2.33 10-2 (39) 641.0 (39,40,47) 

Iso-butanol 381 (39,40) 167 (40) 1.39 10-2 (39) 660.0 (39,40,47) 

Tert-butanol 356 (39,40) 298 (40) 5.60 10-2 (39) 588.6 (39) 

Ethylene glycol 470 (39,40) 261 (40) 2.87 10-6 (39) 1302.0 (39) 

Acetone 329 (39,40) 179 (40) 30.6 10-1 (39,40) 538.4 (39) 

Methyl ethyl 
ketone 

353 (39,40) 186 (40) 1.23 10-1 (39) 480.3 (39,40,47) 

Ethyl acetate 350 (39,40) 190 (40) 1.26 10-1 (39,40) 929.8 (39,40,47,49) 

1,4-dioxane 374 (39,40) 285 (40) 4.91 10-2 (39,40,
89) 

433.3 (39,89) 

Tetrahydrofura
n 

339 (39,40) 164 (40) 2.16 10-1 (39,40) 439.1 (39,40) 

Diethyl ether 308 (1,2) 154 (40) 6.90 10-1 (39,40) 362.8 (39,40) 

Cyclohexane 354 (39,40) 280 (40) 1.30 10-1 (39,40) 387.9 (39,40) 

n-hexane 342 (39,40) 178 (40) 2.00 10-1 (39,40) 363.4 (39,40) 

n-dodecane 489 (39,40) 264 (40) 1.70 10-4 (39) 337.4 (39) 

 

Table 10: Global properties of possible compounds deriving from the solvents after the catalytic process. 

 MW 
g/mol 

Density (25°C) 
kg/m3 

LHV 
MJ/kg 

RON CN 

 Value Ref Value Ref Value Ref Value Ref Value Ref 

Hexan-1-ol 102.2 (39,40) 816 (39) 39.0 (90) 69 (45) 23 (66) 

2-ethyl butanol 102.2 (39,40) 829 (39) 36.03 calc.     

3-hexen-1-ol 100.2 (40) 817 (87) 34.53 calc.     

2-methyl-2-penten-1-ol 100.2 (40)   35.53 calc.     

2-methylphenyl methanol 122.2 (40) 1028 (87) 34.13 calc.     

4-ethyl phenyl methanol 136.2 (40)   35.13 calc.     

2,4,5-trimethyl phenyl methanol 150.2 (40)   35.73 calc.     

Ethyl heptanoate 158,2  870  32.93 calc.     
3 LHV calculated from enthalpy of formation (enthalpy of formation calculated with Joback’s method (52)  

 

Table 11: Phase change data of possible compounds deriving from the solvents after the catalytic 

process. 

 Tboil (1atm) 
K 

Tmelt (1 atm) 
K 

Pvap (25°C) 
bar 

Hvap (25°C) 
kJ/kg 

 Value Ref Value Ref Value Ref Value Ref 

Hexan-1-ol 430 (39,40) 225 (40) 1.24 10-3 (39) 552.1 (39,40) 

2-ethyl butanol 421 (39,40) 258 (87) 2.04 10-3 (39) 524.3 (39) 

3-hexen-1-ol 430 (40) 2134 (91)   455.04 (91) 

2-methyl-2-penten-1-ol 441 (92) 1994 (91) 7.44 10-4 (93) 455.84 (91) 

2-methylphenyl methanol 492 (92) 308 (88)   433.94 (91) 

4-ethyl phenyl methanol 389 (40) 358 (87)   405.74 (91) 

2,4,5-trimethyl phenyl methanol 5624 (91) 3274 (91)   391.54 (91) 

Ethyl heptanoate 461 (39) 207 (39) 1.03 10-1
 (20°C) (96) 283.14 (89) 

4 calculated with Joback’s method (91) 
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4.  Description of the literature studies concerning 
the combustion kinetics of oxygenated 
aromatics, which are the main components of 
EHL-derived fuels 

Oxygenated aromatics are an important fraction of the bio-oil composition. These typical alternative 

fuels are derived by from EHL by the Chemical transformation of enzymatic hydrolysis lignin with catalytic 

solvolysis under mild conditions. Table 12 presents the aromatic oxygenates, for which kinetic studies are 

available. In our analysis, only work performed after 1980 was comprehensively considered. 

 

Table 12: Structure of aromatic oxygenates, for which kinetic studies are available. 

Chemical name The structure 

Phenol 

 
 

Anisole 

 

benzyl alcohol 
 

1 phenyl ethanol, 2 phenyl ethanol 

      

Catechol 

 

o, m, p-cresol 

          

o-Guaiacol 
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4.1. Phenol 

Phenol is the lightest aromatic oxygenates. The kinetic studies related to its combustion are shown 

in Table 13. In 1988, He et al. (96) measured in a single-pulse shock tube the rate constants of the hydrogen 

atom and hydroxyl radical attack on phenol. Experiments were performed over a range of temperatures 

from 1000 to 1150 K and pressures from 2.5 to 5 atm. After that, Lovell et al. (97) studied the pyrolysis of 

phenol in the Princeton flow reactor at atmospheric pressure for temperature between 1064 and 1162 K. 

Using gas chromatography, they identified the main pyrolysis products, which are CO, cyclopentadiene and 

benzene. 

Manion et al. (98) drew similar conclusions from their work on the phenol pyrolysis in H2 also using 

a flow reactor over a temperature range (T = 922-1175 K). In line with their pyrolysis study, Brezinsky et al. 

(100) investigated the oxidation of phenol at atmospheric pressure near 1170 K over a range of equivalence 

ratios (), 0.64-1.73. They found that cyclopentadiene was the major reaction intermediate and proposed 

its formation to occur through that of cyclopentadienyl radical, which is produced via reaction (1).  

C6H5O* = CO + C5H5* (reaction 1) 

Other observed major species included carbon monoxide carbon dioxide, acetylene, benzene, 

1,3-butadiene, ethylene, and methane. Minor species were allene, methylacetylene, propene, ethane, 

methylcyclopentadiene, and naphthalene. 

      Horn et al. (99) studied the pyrolysis of phenol in a shock tube in a high temperature range from 1450 

to 1650 K using atomic and molecular resonance absorption spectroscopy as diagnostics. They deduced 

from their results that the main initiation reaction is the elimination of CO after an internal rearrangement 

of phenol. No study on phenol flame could be found.  

 
Table 13: Summary of the main experimental kinetic studies about phenol. 

Instrument 
Measured property 

Experimental Conditions Reference 

Shock tube 
Rate constant for H 

and OH H-abstraction 
T=1000-1150 K; P=2.5-5 atm He et al., 1988 (96) 

Flow reactor 

 

 

Species 

profiles 

 

 

T=1064-1162 K; P=1 atm; Φ=∞ Lovell et al.,1989 (97) 

T=922-1175 K; P=1 atm; Φ=∞ Manion et al., 1989 (98) 

Shock tube 

T=1450-1650 K; P=2.5 atm; Φ=∞ Horn et al., 1998 (99) 

T=1170 K; P=1 atm; Φ=∞-0.64-

1.73 

Brezinsky et al., 1998 

(100) 
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4.2. Anisole 

Anisole is the aromatic oxygenate, whose combustion kinetics has been the mostly studied; as 

shown in Table 14. Its first pyrolysis study was performed in a stirred reactor by Mulcahy et al. (101) at low 

temperatures (453 and 539 K). In 1980, Schlosberg et al. (102) studied the pyrolysis of anisole in a batch 

reactor at a constant temperature of 723 K and at atmospheric pressure. Methane and CO were found to 

be the main products of this pyrolysis, the other detected products were H2, water, phenol. Lin and Lin 

(103) studied for the first time the thermal decomposition of anisole in a shock tube. Experiments were 

performed between 1000 and 1580 K. The CO formed in the reaction was monitored by resonance-

absorption using a stabilized CW CO laser allowing to propose rate constants for related reactions, 

especially that of reaction (1) of phenol.  

Concerning anisole pyrolysis studies in flow reactors. Mackie et al. (104) studied its pyrolysis in a 

perfectly stirred reactor at low pressures (P=0.015-0.12 atm) and low temperatures (T=850-1000 K). They 

observed CO, phenol and cresols as the most important products. In 2001, Platonov et al. (105) used a flow 

reactor with gas chromatography and showed that increasing the temperature decreased the formation of 

phenolic compounds and increased that of PAHs. Friderichsen et al. 0 (107) also used a flow reactor, 

together with a hyperthermal nozzle; thanks to time-of-flight mass spectrometry and Fourier transform 

infrared spectroscopy, they identified free radicals and reaction intermediates and demonstrated the 

important role of phenoxy and cyclopentadienyl radicals in the formation of naphthalene. More recently, 

Pelucchi et al. (108) used a flow reactor to quantify products from anisole pyrolysis. The main stable 

products detected were CO, CH4, C2H6, benzene and benzofuran. 

The oxidation of anisole has been less studied than its pyrolysis. In 1997, Pecullan et al. (109) were 

the first to study the pyrolysis and oxidation of anisole. The experiments were carried out at high 

temperatures (T = 999-1003 K) and at atmospheric pressure in the Princeton flow reactor with gas 

chromatography analysis. Major products were phenol, cresols, methylcyclopentadiene, and CO; minor 

ones included benzene, cyclopentadiene, ethane, and methane. 

 More recently, the pyrolysis of anisole and its oxidation under stoichiometric oxidation were studied 

by Nowakowska et al. 0 in a jet-stirred reactor. The main reaction products were measured by gas 

chromatography versus temperature Major products were methane, carbon monoxide, benzene, phenol 

and hydrogen; minor ones included benzofuran, xylenes, styrene, and naphthalene. Finally, Wagnon et al. 

(46) conducted an experimental study on the pyrolysis and the oxidation of anisole in a jet-stirred reactor 

in the temperature range 675–1275K, at 1 atm and at equivalence ratios of 0.5, 1 and 2. Major products 

were CO, 1,3-cyclopentadiene, benzene, cresols; minor ones included toluene, styrene, ethane, and 

methane. 

A few studies in flame were made with anisole. The first laminar flame speed measurements of 

anisole were performed in 2017. Wu et al. (111) used OH chemiluminescence on a Bunsen burner for 

various equivalence ratios and different pressures. Wagnon et al. (46) also measured burning velocities 

thanks to the heat flux method on a flat flame burner at 358 K and ambient pressure. In 2019, Zare et al. 

(112) completed flame speed measurement with the bomb method at temperatures from 460 to 575K and 

pressures from 0.5 to 3 atm. 

 Concerning product measurements in anisole flames, in 2019, Bierkandt et al. (113) published flame 

structures at two equivalence ratios, 1.2 and 1.6. Products measurements were performed by 

photoionization mass spectrometry and photoelectron spectroscopy. In addition to CO and H2, the 
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intermediates produce in the highest amounts, with mole fractions on the order of 10−3 –10−2, were methyl 

radical (CH3), CH4, C2H2, C2H4, C2H6, CH2O, cyclopentadienyl radical (C5H5), cyclopentadiene (C5H6), benzene 

(C6H6), phenol (C6H5OH), and benzaldehyde (C6H5CHO).  

Table 14: Summary of the main experimental studies about anisole. 

 

4.3. Benzyl alcohol 

Only one kinetic study concerning benzyl alcohol was found. Zhou et al. (114) studied the oxidation 

of benzyl alcohol in an atmospheric jet-stirred reactor with gas chromatography analysis at equivalence 

Instrument 
Measured 
property 

Experimental Conditions Reference 

Batch 
reactor 

Species 
profiles 

 

T=723 K; P=1 atm; Φ=∞ Schlosberg et al., 1983 (102) 

Shock tube 
T=1000-1580 K; P=0.4-0.9 atm; 
Φ=∞ 

Lin and Lin., 1986 (103) 

Perfectly-
stirred 
reactor 

T=850-1000 K; P=0.015-0.12atm; 
Φ=∞ 

Mackie et al., 1990 (104) 

T=673-1173 K; P=1 atm; Φ=∞,1 Nowakowska et al, (110) 

T=675-1275 K; P=1 atm; Φ=∞, 0.5, 
1 and 2. 

Wagnon et al., 2018 (46) 

Flow reactor 
 

T=1023-1173 K; Φ=∞ Platonov et al., 2001 (105)  

T=793-1020 K; P=1 atm; Φ=∞ Arends et al., 1993 (106) 

T=873-1373 K; P=1 atm; Φ=∞ 
Friderichsen et al., 02001 
(107) 

T= 525-675 K;  P=1 atm; Φ=∞ Pelucchi et al. 2018 (108) 

T=999-1003 K; P=1 atm; Φ=∞, 
1.05, 0.62,1.71 

Pecullan et al., 1997 (109) 

Bunsen 
burner 

Laminar flame 
speed 

T=423 K; P=1-7.5 bar; Φ=0.75 
T=423 K; P=1 bar; Φ=0.6-1.3 

Wu et al., 2017 (111) 

Flat flame 
burner T=358 K; P=1 atm; Φ=0.6-1.2 Wagnon et al., 2018 (46) 

Constant 
Volume 
Chamber 

T=460-575 K; P=1atm; Φ=0.8-1.4 
T=460-575 K; P=0.5-3 atm; Φ=1 

Zare et al., 2019 (112) 

Burner Product and 
temperature 

flame structure 
T=500 K; P=0.04 bar; Φ=1.2,1.6 Bierkandt et al., 2019 (113) 
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ratios, 0.4 and 2.0, at temperature between 700–1100 K; 19 species were detected, including fuel. Major 

products were benzene, benzaldehyde, and CO; minor ones included acetaldehyde, phenol, benzofuran, 

ethane, and methane. No study on benzyl alcohol flame could be found. 

Table 15:  Summary of the main experimental studies about benzyl alcohol. 

Instrument Measured property Experimental conditions Reference 

Jet-stirred reactor  Species profiles  T=700–1100 K; P=1 atm; 
Φ=0.4, and 2.0. 

Zhou et al., 2018 (114) 

 

4.4. Phenyl-ethanols 

Several gas-phase kinetic studies were recently performed with 2-phenyl-ethanol because of its 

strong ignition resistance and its high heating value compared to other oxygenated aromatics. The first 

kinetic experiments concerned its pyrolysis in a closed static reactor by Taylor et al. (115) in 1988 (T=720-

767 K, P = 1 bar) and Chuchani et al. in 1999 (116) (T=743-1040 K, P=65-198 Torr). They both observed the 

same major produced species, styrene and toluene, and ethylbenzene as a minor one; Taylor also found 

traces of biphenyl, bibenzyl, 2-methoxyethylbenzene and 2-phenylethylether. 

In 2017, Kiran et al. (118) pyrolyzed 2-phenyl-ethanol in a shock tube at pressures from 7 to 13 atm 

and for temperatures from 1011 to 1446 K. The main products were styrene, benzene and toluene, with 

ethylbenzene and phenylacetylene found in smaller quantities and benzaldehyde observed as traces. 

 In 2021, Brian et al. (117) measured the tendency of 1- and 2- phenyl-ethanol to produce soot 

during their oxidation in an isothermal flow reactor at temperatures from 800 to 1200 K and atmospheric 

pressure. Using gas chromatography, for the chosen rich mixture (Φ=3), they found carbon monoxide, 

benzene, styrene, toluene and benzaldehyde to be the main products; the formation of acetophenone was 

also reported for 1-phenyl-ethanol and that of phenylacetaldehyde for 2-phenyl-ethanol.  

In 2017, Shankar et al. (119) used a shock tube to measure the ignition delay times of 

2-phenyl-ethanol at 10 and 20 bar, for two equivalence ratios (0.5 and 1) and for temperatures from 1050 

to 1500 K. Fang et al. (120) also evaluated the ignition delay times of 2-phenyl-ethanol. They used a rapid 

compression machine at pressures from 10 to 40 bar, temperatures from 813 to 992 K and for equivalence 

ratios between 0.35 and 1.5.  

No study on phenyl-ethanol flame could be found. 
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Table 16: Summary of the main experimental studies about phenyl-ethanol. 

Instrument Measured 
property 

Experimental conditions Reference 

 

Closed vessel 

 

 

Species profiles 

T=720-767 K; P = 1 bar; Φ=∞ Taylor et al., 1988 (115) 

T=743-1040 K; P=0.086-
0.263bar; Φ=∞  

Chuchani et al., 1999 
(116) 

Plug Flow Reactor T=800-1200 K; Φ=3 Brian et al., 2021 (117) 

Shock Tube 

T= 1011-1446 K; P=7-13 atm; 
Φ=∞ 

Kiran et al., 2017 (2017) 

Ignition delay 
times 

T=1050-1500 K; P=10 and 20 
bar; Φ=0.5 and 1 

Shankar et al., 2017 
(119)  

Rapid Compression 
Machine 

T=813-992 K; P=10-40 bar; 
Φ=0.35 and 1.5 

Fang et al., 2021 (120)  

 

4.5. Catechol 

Catechol is a phenol-type compound representative of the structural entities of biomass, charcoal 

and wood. Table 17 shows the main combustion kinetics studies related to catechol. In 2002, Wornat et al. 

(121) studied the pyrolysis of catechol in a flow reactor at a temperature of 1273 K, at atmospheric 

pressure. They used high pressure liquid chromatography with detection by UV-visible diode (UV) to 

identify 59 species. The same team (122) repeated the same study at lower temperature, from 973 K, with 

gas chromatography quantification. The main products obtained were CO, acetylene, 1,3-butadiene, 

phenol, cyclopentadiene, benzene and ethylene; minor products were methane, ethane, propyne, 

propadiene, and propylene. 

 Again, in the same team, Thomas et al. (123) investigated the gas-phase pyrolysis and oxidation of 

catechol with equivalence ratios ranging from ∞ (pure pyrolysis) to 1.08 (near stoichiometric oxidation). 

Experiments were conducted over a temperature range of 500–1000 °C. Major products were CO, 

acetylene, phenol, benzene, vinylacetylene, ethylene, methane, cyclopentadiene, styrene, and 

phenylacetylene; minor ones included ethane, propyne, propadiene, propylene and toluene.  

No study on catechol flame could be found. 
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Table 17:  Summary of the main experimental studies about catechol. 

 

4.6. Cresols 

No study could be found on cresol gas phase kinetics. The only cresol kinetic studies were performed by 

Martino et al. (124, 125) in supercritical water solution in a flow reactor. The oxidation of o-cresol was 

studied at pressures 200-300 atm, temperatures 623-773 K and lean equivalence ratios (0.0285-0.524) 

(124). Except carbon dioxide and carbon monoxide, the main products were phenol, 

2-hydroxybenzaldehyde, benzodioxole and indanone. The same team (125) studied the thermal 

decomposition of o-, m- and p-cresols in supercritical water at 733 K and 250 atm. A very poor conversion 

was observed, with nevertheless the reported formation of phenol and of the corresponding o-, m- or 

p-hydroxybenzaldehydes. 

 

4.7. Guaiacol 

Guaiacol is a low molecular weight semi-volatile polar aromatic compound, and one of the main 

primary tars produced during lignin pyrolysis. Its combustion kinetics studies are presented in Table 18. 

Guaiacol reactions were first investigated in closed vessels. In 1963, Klein et al. (126) investigated its 

thermal decomposition at atmospheric pressure for temperatures ranging from 523 to 873 K. They 

detected at low conversion methane, carbon monoxide, pyrocatechol and phenol as the only products. In 

1982, Ceylan et al. (127) studied the thermolysis of guaiacol in tetralin, at 578-618 K and mostly found the 

formation of phenol, o-cresol, methylcatechols, and methylguaiacols.  

Concerning flowing experiments, Scheer et al. Error! Reference source not found. used a heated SiC 

micro tubular (μ-tubular) reactor at low-pressure to investigate the pyrolysis of guaiacol at high 

temperature, up to 1575 K. The decomposition products were detected by both photoionization time-of-

flight mass spectroscopy and infrared spectroscopy). They reported to formation of CO, phenol, 

cyclopentadione. 

More recently, guaiacol pyrolysis and oxidation was studied by Nowakowska et al. (129) under 

stoichiometric conditions in a jet stirred reactor between 623 and 923 K for a residence time of 2 s. The 

main primary products were CO, acetylene, benzene, and phenolic molecules as pyrocatechol and 

methylcatechols; minor ones included ethane, propyne, propadiene, anisole and toluene.  

Instrument Measured 
property 

Experimental Conditions Reference 

 

Flow reactor 

 

Species profiles 

T=973,15-1273 K; P=1 atm; Φ=∞ 
Wornat et al., 2002 
(122)  

T=773-1273 K; P=1 atm; Φ=0-0.92 
Thomas et al., 2007 
(123) 



36 

 EHLCATHOL – 101006744 – D6.1 – Bibliographical study on EHL-derived fuels… 

  

No study on catechol flame could be found. 

Table 18:  Summary of the main experimental studies about guaiacol. 

Instrument Measured 
property 

Experimental conditions Reference 

 

Closed vessel 

 

 

Species profiles 

T=623-923 K; P=1 atm; 
Φ=∞ 

Klein et al., 1963 (126) 

T=578-618 K; P=1atm Ceylan et al., 1982 (127) 

Jet-stirred reactor T=623-923 K; P=1 atm; 
t=2s 

Nowakowska et al., 2014 
(129) 

 

4.8. Summary of species produced during the oxidation of 
oxygenated aromatics 

Table 19 summarizes the products which were reported during the kinetic investigations of the oxidation 

of the oxygenated aromatics listed in Table 12. As they are the products of the complete combustion, H2O 

and CO2 are not specified in Table 19, their presence is implicit. No gas-phase study was found for cresol. 

CO was reported as the major product from all the investigated reactants, with the kinetic importance of 

reaction (1) underlined in most the studies. A significant formation of benzene can also be noted due to 

the easy ipso-addition of H-atoms, see reaction (2) in the case of phenol: 

+ H*      =        +   OH*           (reaction 2) 

 

Two usual soot precursors, naphthalene and 1,3-cyclopentadiene, are also often reported, it is also the 

case for acrolein, a toxic aldehyde. 
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Table 19: Products species of kinetics experiments in past oxidation studies. 

 Major species (>10%) Minor species (<10%) 

  Non-aromatic Aromatic  

Phenol CO, 1,3-Cyclopentadiene, Benzene. allene, 
methylacetylene, 
propene, ethane, 
methylcyclopentadiene. 

Naphthalene. 

Anisole CO, Acetylene, Propene, 
Acetaldehyde,1,3-Cyclopentadiene, 
Benzene, Cresols.  

Methane, Ethylene, 
Allene, Propyne, 
1-Butyne, Acrolein, 
1,3-Pentadiene.  

Fulvene, Toluene, 
Phenol, Styrene, 
Guaiacol Ethylbenzene, 
Indene, Benzofuran, 
Naphthalene, 
dihydronaphthalene,  

Benzyl 
alcohol 

CO, Methane, Ethylene, Benzene, 
Phenol, Benzaldehyde. 

Ethane, Propylene, 
butane, Acetaldehyde, 
Acrolein.  

Benzofuran, Benzyl 
formate, benzyl acetate 
and benzyl propionate 

Phenyl 
ethanols 

CO, Styrene, Benzene, Toluene  Ethylbenzene, 
Phenylacetylene, 
Benzaldehyde, 
acetophenone and 
phenyl-acetaldehyde. 

Catechol CO, Methane, Ethylene, Benzene. Propene, Propadiene, 
Acetylene, 
Phenylacetylene, 
Vinylacetylene, 
1,3-Cyclopentadiene, 

Styrene, Toluene 

Guaiacol CO, Methane, Benzene, Phenol, 
Cresols, Pyrocatechol.  

Acetylene, Ethylene, 
Ethane, Methanol, 
Acetaldehyde, Acrolein 

Benzaldehyde, Anisole, 
2-Hydroxybenzaldehyde. 
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4.9. Conclusion for this part 

This bibliographic review showed that the literature is poor as far as phenolic compound gas phase 

oxidation is concerned. This is due to experimental difficulties in handling these species due to their low 

volatility. Most of them are even solid at room temperature. This is the case of phenol, the phenolic 

compound with the simplest structure (boiling point of 455 K at atmospheric pressure, see Table 5). As a 

matter of fact, studies mainly concern anisole and guaiacol, and there is clearly a need of new data sets for 

better understanding the oxidation chemistry of these species. 

The analysis of oxidation reaction products (see Table 19 for a summary) shows that phenolic compounds, 

depending on conditions, may lead to the formation of aromatic and poly aromatic hydrocarbons, and to 

that of unsaturated hydrocarbons. But again, very little literature studies report comprehensive 

intermediate mole fraction data sets and sometimes only for a few operating conditions. 

As far as global reactivity indicators are concerned, there is also a lack of data. Ignition delay times and 

laminar urning velocities have been measured for very few species only. Table 20 summarizes experimental 

data types available for the phenolic compounds. Thus, new sets of experimental data are highly needed 

to better characterize the reactivity of this class of compounds.  

Table 20: Map of available experimental data types for phenolic compounds. 

 Detailed speciation Ignition delay times Laminar burning 
velocities 

Phenol X X 0 

Anisole X 0 X 

Benzyl 
alcohol 

X 0 0 

Phenyl 
ethanols 

X X 0 

Catechol X 0 0 

Cresols 0 0 0 

Guaiacol X 0 0 
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5. Conclusion 

To understand the purpose of valuing EHL, a large number of studies have been carried out in recent years 

to produce high performance fuel blends, i.e., high heating value jet-fuel, from technical lignins including 

EHL. However, understating of EHL structure and its exploitation towards added-value products are still 

needed urgently. For this, the project EHLCATHOL aims at developing a novel technology that fully takes 

the advantage and utilizes the energy of the waste-EHL by transforming it to high quality applicable liquid 

fuels. Oxygenated aromatics and alcohols constitute an important fraction of the composition of bio-oils 

obtained by valorization of EHL; arenes or solvents-derived-molecules are also existed in EHL-derived 

biofuel. 

About the combustion properties of surrogates and catalysis solvents, auto-ignition, phase change state 

global fuel parameters are presented. About characteristic fuel data:  

- LHV of arenes is close to that of traditional gasoline (≈ 42 MJ/kg). Concerning surrogate 

compounds and solvents, heating values are higher than that of ethanol (≈ 27 MJ/kg) but lower 

than that of existing bio-diesels (≈ 37 MJ/kg). So, at first sight, a biofuel composed of these 

species would have a LHV close to existing biofuels. A minimum value of 35 is needed in Europe 

for biodiesel (EN ISO 14214, (94)). 

- Research Octane Numbers are, most of time, higher than the minimum value of 95 fixed by 

EN ISO 4259:2006 (95), so it is also expected for the final biofuel. 

- Only a few of these molecules have higher Cetane Numbers than the minimum value of 51 

fixed for biodiesel (EN ISO 14214 (94)) and diesel (EN ISO 4259:2006 (95)); therefore, at that 

moment, it might be difficult to use this kind of pure biofuel as biodiesel. 

Kinetic studies on oxygenated aromatics expected in the composition of biofuels derived from lignin are 

also presented. Except for anisole, there is very little work on these species; this is mainly due to 

experimental difficulties related to the very low volatility of this class of compounds. Even if speciation data 

are available for some of them, it is only for a limited range of conditions. The lack of data is even more 

important for global reactivity indicators such as laminar burning velocities. Thus, new experimental 

studies are needed in order to better understand the combustion properties of these aromatic oxygenated 

fuels.   

The objective is now to carry out additional studies on fuels resulting from the compounds of EHL solvolysis 

oil in order to better understand the specificities of this class of compounds (data speciation and laminar 

burning velocity measurements) and to develop a detailed kinetic model, permitting then the development 

of reliable bio-oil surrogates.  
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