EHLCATHOL

Chemical transformation of enzymatic hydrolysis lignin (EHL) with catalytic solvolysis to fuel commodities under mild conditions

http://ehlcathol.eu/

W2: Mechanism-EHL solvolysis and potential condensation reactions

Catalytic hydrogenation and hydrodeoxygenation of selected model compounds

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no 101006744

Catalytic hydrogenation/hydrodeoxygenation of model compounds

- Development of heterogeneous base metal catalysts
- Reaction optimization for selective hydrogenation/hydrodeoxygenation processes
- Application of the established protocol for other EHL-derived model compounds

R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner and M. Beller, Science, 2013, 342, 1073. R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M. Pohl, J. Radnik, M. Beller, Science, 2017, 358, 326.

Catalytic hydrogenation/hydrodeoxygenation

- B is the targeted product-Complete hydrogenation/hydrodeoxygenation
- Catalyst showed more selectivity towards product B (99%)

• In all the cases complete conversion and 99% selectivity were achieved

Catalytic hydrogenation/hydrodeoxygenation

• Reaction in n-hexane or n-heptane or n-octane

- Reaction in i-PrOH
- i-PrOH is found to be the good caping agent

Planned mechanistic investigations

- To study the initial kinetics and mechanism, we will select fist EHL derived monomer and then dimer or oligomer (these will be provided by W4).
- Solvolysis, hydrogenolysis, hydrogenation reactions will be applied.
- In situ-IR or in situ-NMR studies will be conducted.
- Based on these studies, product distribution and suitable caping agents will be find out to protect/deactivate functional groups.
- We will look for the possible condensation or re-condensation reactions.

Summary and outlook

- We developed Ni-catalyzed hydrodeoxygenation process for the conversion of ketones, ethers and phenols to (cyclo)alkanes.
- Hydrodeoxygenation of lignin and EHL-derived model compounds, dimers and oligomers will be tested.
- Mechanistic and kinetics investigations for the reaction of model EHL-derived model compounds will be made.

