

EHLCATHOL

Chemical transformation of enzymatic hydrolysis lignin (EHL) with catalytic solvolysis to fuel commodities under mild conditions

WP6: Measurements and modeling of fuel combustion and emission

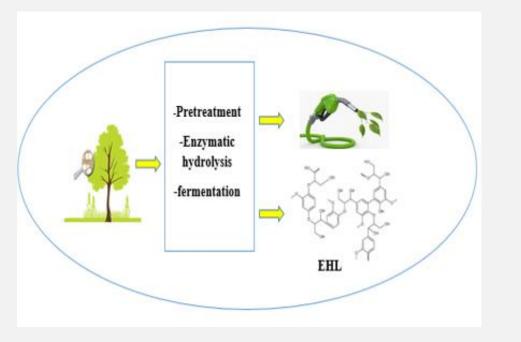
Oxidation of guaiacol in a Jet-stirred reactor

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no 101006744

Presentation outline

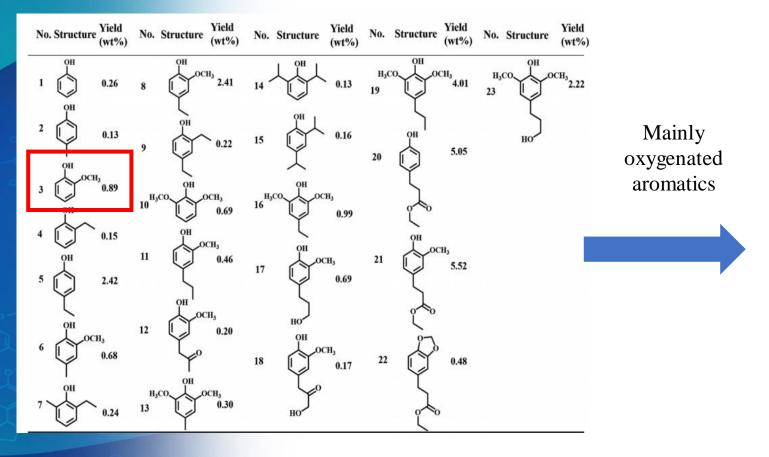
I. State of the art

II. Experimental study of Guaiacol oxidation:

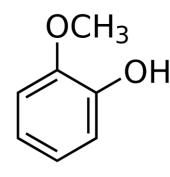

experimental setup

➤ results

III. Conclusion and perspectives


1. State of the art

- > EHLCATHOL project \longrightarrow WP6: Measurements and modelling of fuel combustion and emission (LRGP).
- Bioethanol production process Enzymatic hydrolysis lignin.



1. State of the art

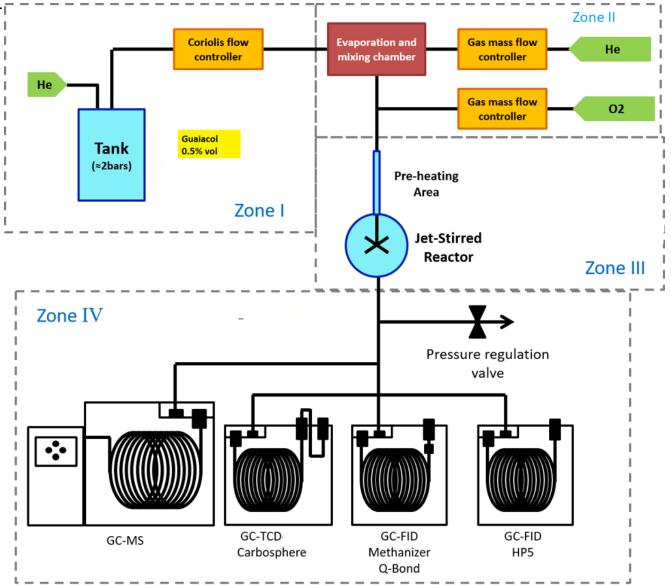
Sang, Y., et al. 2020. Catalytic Depolymerization of EHL into Monomers over an Unsupported Nickel Catalyst in Supercritical Ethanol. Industrial & Engineering Chemistry Research.

Chemical structure of Guaiacol.

	Pyrolysis	Oxidation
Flow reactor	Klein et al., 1980	
	Ceylan et al., 1982	
Jet-Stirred reactor	Nowakowska et al., 2018	Nowakowska et al., 2018

Guaiacol oxidation

Jet-stirred reactor



2. Experimental setup

Complete oxidation reaction:

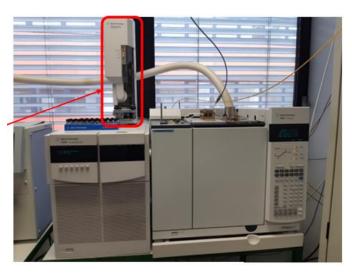
$$C_7 H_8 O_2 + 8 O_2 = 7 CO_2 + 4 H_2 O_2$$

Temperature (τ)	600-950 K
Residence time (τ)	2s
Pressure (P)	1.07 bar
Equivalence ratio (φ)	1

- **3.** Analytical devices
- Quantification

GC-1D

- TCD: Carbosphere packed column: light products (C₁-C₂)
- **FID** Q-Bond capillary column

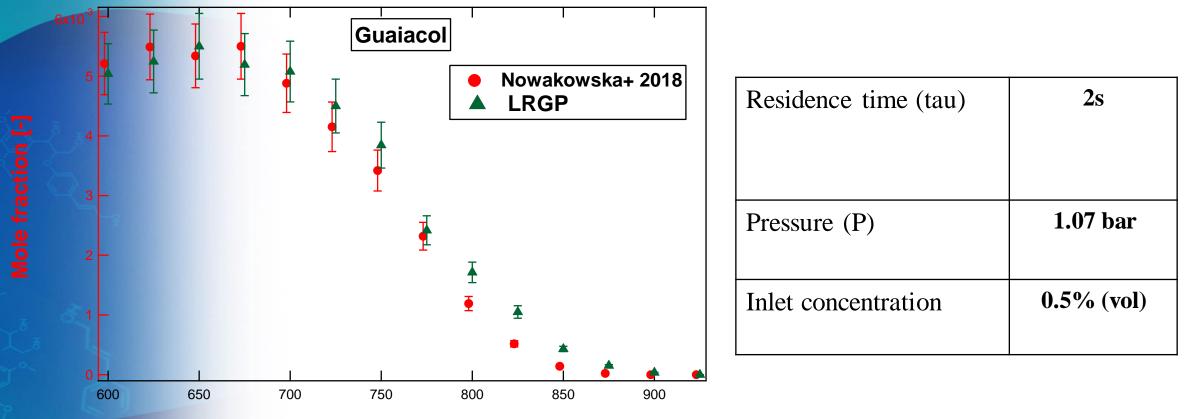

preceded by a methanizer : (C_1-C_6)

• GC-MS-FID

http://ehlcathol.eu/

2D-GC (improved separation)

4. Analysis of heavy species


Trap at liquid nitrogen temperature

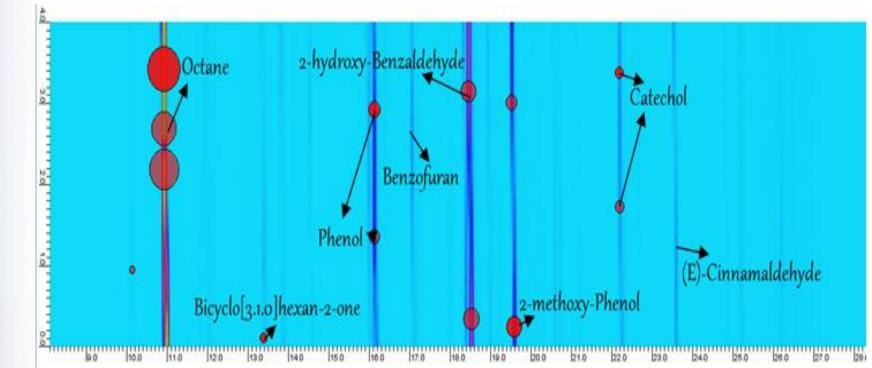
✓ Preparation of samples
✓ 100 µL standard solution (*n*-octane)
✓ 5 mL of acetone

5. Guaiacol reactivity

Temperature (K)

Nowakowska, M., Herbinet, O., Dufour, A., Glaude, P.-A. 2018. *Kinetic Study of the Pyrolysis and Oxidation of Guaiacol. The Journal of Physical Chemistry A.*

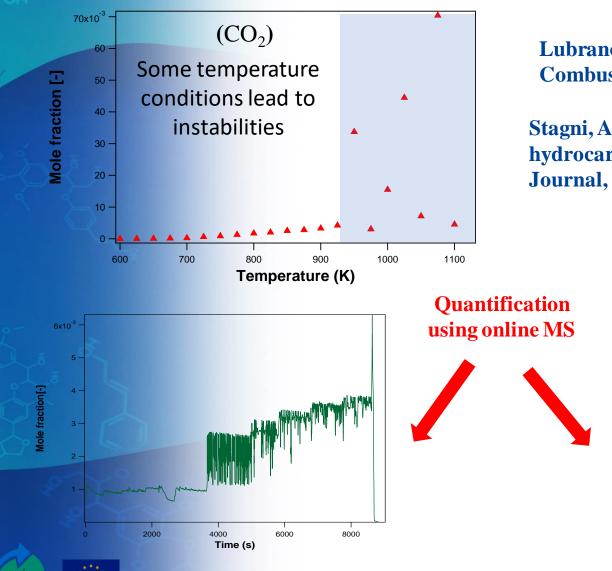
6. Main products


The main products				
Light products	Heavy products			
CO, CO_2 , CH_4 ,	2-Hydroxy-benzaldehyde;			
$C_2H_4, C_2H_4, C_2H_6,$	Phenol;			
C_3H_6 , C_3H_4 ,	Pyrocatechol;			
	Cinnamaldehyde; Benzofuran;			
	1,3-Benzodioxol-2-one;			
	Cresol.			

7. Improved separation by 2D-GC

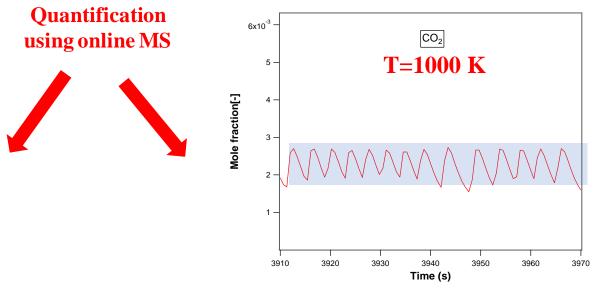
Octane is not a product ; it is the standard used for the quantification

First Retention time


8. Comparaison between 1D-GC and 2D-GC products

Molecules	GC-1D	GC-2D
Anisole	Ø	S
2-hydroxybenzaldehyde	\checkmark	S
2,3-dimethylphenol		\checkmark
Benzofurane	\checkmark	\checkmark
1,3-benzodioxol-2-one	\checkmark	\checkmark
(E)-Cinnamaldehyde	\checkmark	\checkmark

Molecules	GC-1D	GC-2D
P-cresol		⊘
2,3-dimethylphenol		\checkmark
2-phenylpropenal		\checkmark
2-cyclohexan-1-one		\checkmark
Styrène		\checkmark
Toluène		\checkmark



9. High temperature oscillations behaviour (CO₂)

Lubrano Lavadera, M., et al. (2018). Oscillatory Behavior in Methane Combustion: Influence of the Operating Parameters. Energy & Fuels.

Stagni, A., et al. (2019). The role of chemistry in the oscillating combustion of hydrocarbons: an experimental and theoretical study. Chemical Engineering Journal, 123401.

Conclusion

Same guaiacol conversion observed between our study and literature.

>The same reactivity of heavy and light species.

>2D-GC: improved separation of the species.

Perspectives for Guaiacol

> Study of guaiacol oxidation in fuel-lean (Φ =0.5) and fuel-rich (Φ =2.0) environments,

> Continue the study of oscillations for the heavy species (> C_5), the identification of conditions (amplitude, temperature range)

 \succ Identification of the structures of new compounds detected by GC-2D,

> Development of a detailed kinetic model for the oxidation of Guaiacol

Acknowledgements

Olivier Herbinet *Univ. Lorraine Ass. Prof.*

Frédérique Battin-Leclerc CNRS Researcher

Jérémy Bourgalais CNRS Researcher

Janney Debleza Master's student

