

Chemical and fuel commodities through catalytic solvolysis of lignin

A presentation on celebrating the 40th anniversary of CACS

Yongdan Li

Professor of Industrial Chemistry Department of Chemical and Metallurgical Engineering School of Chemical Technology Aalto University Email: <u>Yongdan.li@aalto.fi</u>

And Adjunct Chair Professor of Industrial Catalysis Tianjin University

- **4**-

***** Part 1: Ethanolysis of Kraft lignin

***** Part 2: Depolymerization of enzymatic hydrolysis lignin

The next Grand Challenge

- ÷-

Global Carbon Imbalance

Nature carbon cycle (1750)

Human disturbance (the last decade of the 20th century)

IPPC AR-4, 2007

•

Biomass is enough for fuels and chemicals

÷.

Lignin, the only renewable aromatic resource

Nature **454**, 841-845 (2008)

- **\$**-

Schematic representation of a soft wood lignin structure

Lignin shows lower O/C, higher energy content among lignocellulosic biomass, indicating it is more promising as a petroleum alternative.

- **-**

Potential applications of lignin

•

Available lignin resources

Kraft Lignin	• Byproduct of pulping industry
Enzymatic Hydrolysis Lignin	• Byproduct of bio-ethanol
Organosolv Lignin	Soluble in organic solventInsoluble in water
Others	Steam explosion ligninOxidation lignin

- Only Kraft lignin is produced in an industrial scale.
- Enzymatic Hydrolysis Lignin probably become future major lignin raw stock

- ***** -

Part 1.1: Ethanolysis of Kraft lignin over MoC_{1-x}/AC

> Overall yield of quantified products **1.64 g/g** lignin.

- **(**

XRD pattern (A) and TEM image (B) of the α -MoC_{1-x}/AC.

- **Q**

- **•**•

Ethanol is the most efficient solvent for Kraft lignin conversion

Products	Solvent				
	ethanol	water	methanol	isopropano	
О-	4	14	3	17	
О-	35	3	8	2	
О-	16	11	5	5	
О_	23	8	2	4	
other aromatics	202	9	2	3	
alcohols	409	-	<u> </u>	-	
esters	949	—	-	-	

Part 1.2: Reaction mechanism

- **4**-

Lignin Partical Size 20-80 µm >> Catalyst Pore Diameter 7.9 nm

The pore diameter of MoC _{1-x} /AC catalyst					
Sample	S _{BET} (m²/g)	V _O (cm ³ /g)	V _m (cm ³ /g)	Pore diameter (nm)	
MoC _{1-x} /AC	749	0.12	0.59	7.9	

- ÷-

MALDI-TOF-MS profiles of various substrates:

- (a) Kraft lignin treated in supercritical ethanol without catalyst,
- (b) Kraft lignin treated in supercritical ethanol over the MoC_{1-x}/AC catalyst.

- ÷

- (A) Liquid product yields of lignin conversion over different Mo-based catalysts
- (B) The FT-IR spectra of the different samples before and after reaction
 - (a) Used MoO₃/Al₂O₃, (b) Used Mo/Al₂O₃, (c) Used α -MoC_{1-x}/AC, (d) Used Mo₂N/Al₂O₃
 - (e) Kraft lignin, (f) Dried liquid product from lignin catalyzed by Mo/Al₂O₃.

- **Q**

(A) Photographs of (a) used Mo/Al₂O₃ catalyst with liquid products, (b) fresh Mo/Al₂O₃ catalyst in ethanol in EPR sample cell.

(B) EPR spectra of (a) used Mo/Al₂O₃ catalyst, (b) fresh Mo/Al₂O₃ catalyst and (c) Kraft lignin.

Other used Mo-based catalysts with g tensor around 1.92 were also recorded, indicating the presence of Mo (V)

- ***** -

Part 1.3: Ethanolysis of Kraft lignin over MoC_{1-x}/Cu-MgAlO_z

Ethanolysis of Kraft lignin over MoC_{1-x}/Cu-MgAlO_z

Ethanolysis of Kraft lignin over MoC_{1-x}/Cu-MgAlO_z

- **Q**

Roles of components in catalyst

Appl. Catal. B, 2017, 202, 305-313

Ethanolysis of Kraft lignin over MoC_{1-x}/Cu-MgAlO_z

- **\$**

As temp. increased, the yield rise

Highest Yield: 3207 mg/g lignin Aromatics 575 mg/g lignin Alcohols 704 mg/g lignin Esters 1928 mg/g lignin (330 °C, 6h)

Appl. Catal. B, 2017, 202, 305-313

Summary of Kraft lignin ethanolysis over Mo-based catalysts

- Complete catalytic ethanolysis of Kraft lignin to alcohols, esters and aromatics over MoC_{1-x}/AC with a yield of 1.64 g/g lignin.
- Ethanol itself depolymerizes Kraft lignin. The dissociative Mo (V) ethoxide facilitates the complete decomposition of the segments. Ethanol pieces are incorporated into the product molecules.
- The combination of MoC_{1-x} and Cu-MgAlO_z maximizes the catalytic activity.

EHL

- **-**

An emerging topic: Catalytic solvolysis of enzymatic hydrolysis lignin (EHL)

EHL

- ÷.

Part 2.1: Catalytic ethanolysis of EHL without H₂

Catalytic ethanolysis of EHL without H_2

> No tar or char is formed, and the EHL is completely liquified

Ind. Eng. Chem. Res. 2019, 58, 10255-10263

Complex alkylphenols are the main products

- **\$**-

Product yield and distribution over different catalysts

		-	Yield (mg/g EHL)				
Entry	Catalyst	Solvent	Aromatic	Aromatic	Phenolic Compounds	Overall Aromatic	
			Ethers	Esters	1	Compounds	
1	WO ₃	Ethanol	51.1	43.6	123.3	218.0	
2	H_2WO_4	Ethanol	23.1	11.5	128.3	169.1	
3	γ -Al ₂ O ₃	Ethanol	19.3	2.4	43.7	65.5	
4	WO_3/γ - Al_2O_3	Ethanol	32.9	26.3	245.2	315.8	
5	WO_3/γ - Al_2O_3	Methanol	16.2	3.5	160.2	179.6	
6	WO_3/γ - Al_2O_3	Isopropanol	26.8	5.7	96.0	128.2	

Ind. Eng. Chem. Res. 2019, 58, 10255-10263

- > The WO₃/ γ -Al₂O₃ catalyst gave highest yield
- > Ethanol gave higher aromatic product yield than other alcohols

- ÷.

Part 2.2: Catalytic ethanolysis of EHL with H₂

- **•**•

Part 2. Unsupported Ni catalyst catalyzed EHL ethanolysis with H₂

Ind. Eng. Chem. Res. 2020, 59 (16), 7466-7474.

- Ø.

Fig. 5. Total-ion chromatogram (TIC) of the liquid product obtained from EHL depolymerization over Ni (220H) in ethanol over Ni (220H) at 280 °C for 6 h with 2 MPa H_2 .

- ➢ High yields of esters were detected
- > The alkylphenols only contain para-alkyls

TIC of products and structures of main monomers obtained from EHL depolymerization with Ni (220H) at 280 °C for 6 h with 2 MPa H_2 .

- **\$**

Ind. Eng. Chem. Res. 2020, 59 (16), 7466-7474.

- Ø.

Ind. Eng. Chem. Res. 2020, 59 (16), 7466-7474.

Cleavage of linkages in EHL (2D-NMR analysis)

➢ C-C linkages in C' are gradually cleaved during Ni(220H) catalyzed reaction

- **Q**

Ni(220H) catalyzed EHL depolymerization.

- **- -** - -

Part 2.3: The effect of solvent for EHL depolymerization

The effect of solvent for EHL conversion

- Ø

NiMo/y-Al₂O₃ catalyzed depolymerization of EHL in ethanol

Reaction condition: 320 °C, 27.6 bar H_2 , 7.5 h, ethanol solvent, NiMo/ γ -Al₂O₃

Complex alkylphenols were the main products

The effect of solvent for EHL conversion

$NiMo/\gamma$ - Al_2O_3 catalyzed depolymerization of EHL in cyclohexane

Same reaction condition: 320 °C, 27.6 bar H_2 , 7.5 h, ethanol solvent, NiMo/ γ -Al₂O₃

Products Yields

Total: 10.4 wt%

- Ø

- > The benzene rings in products was completely hydrogenated
- > The O in products was completely removed

Summary: EHL catalytic depolymerization

- Ø.

- The product distribution strongly depends on the solvent, catalyst, with or without hydrogen.
- In WO₃/γ-Al₂O₃ catalyzed reaction without H₂, complex alkylphenols are the main products. In Ni catalyzed reaction with H₂, esters and para-alky phenols are the main products.
- EHL was depolymerized into phenolic monomers in ethanol, but produced cycloalkanes in cyclohexane.

EU Horizon 2020 project 101006744 EHLCATHOL website: <u>www.ehlcathol.eu</u>; Welcome to join us!

Since 2010, the research on lignin chemical conversion has received funding from: Ministry of Science and Technology of China Natural Science Foundation of China Ministry of Education of China **China Scholarship Council** European Union's Horizon 2020 research and innovation program under grant agreement no 101006744

Congrats for the 40th Anniversary of CACS!

Let us expect a prosperous future!

