EHLCATHOL

Chemical transformation of enzymatic hydrolysis lignin (EHL) with catalytic solvolysis to fuel commodities under mild conditions

Catalytic depolymerization of Kraft lignin and enzymatic hydrolysis lignin to chemicals and fuels

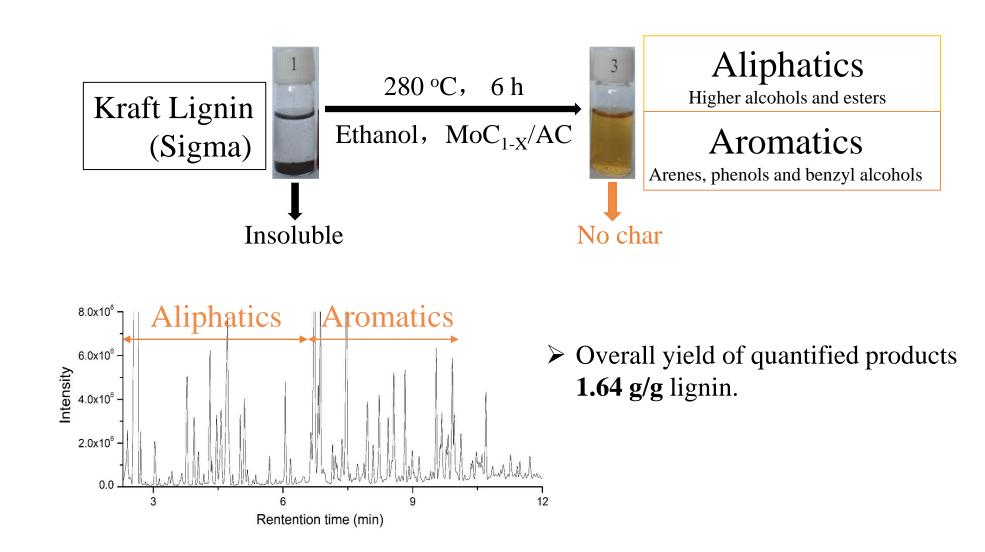
Yushuai Sang

EHLCATH

Supervisor: Professor Yongdan Li

http://ehlcathol.eu/

Literature Review:


Part 1: Catalytic ethanolysis of Kraft lignin: the role of ethanol

Part 2: Catalytic depolymerization of enzymatic hydrolysis lignin (EHL): reactivity of EHL

Literature Review:

Part 1: Catalytic ethanolysis of Kraft lignin over MoC_{1-x}

Ethanolysis of Kraft lignin over MoC_{1-x}/AC

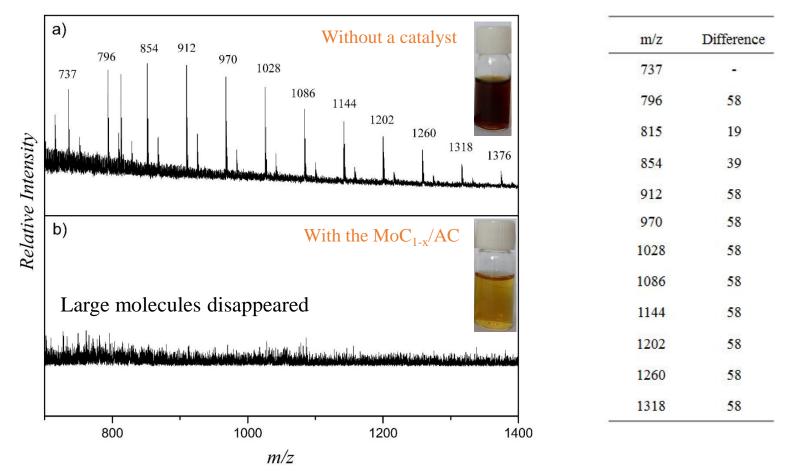
- **Q**

Ethanolysis of Kraft lignin over MoC_{1-x}/AC

25 main products cover 84% of the total area in the GC-FID Alcohols – C6 `он `он `ОН 25.2% Aliphatics Esters – C8 Ethanol self-conversion Esters – C10 58.4% Он Он Он Лон **Benzyl alcohols** Aromatics 16.4% **Phenols** Lignin depolymerization Arenes

Angew. Chem. Int. Ed., 2014, 126, 7438-7443

Ethanolysis of Kraft lignin over MoC_{1-x}/AC


- ÷

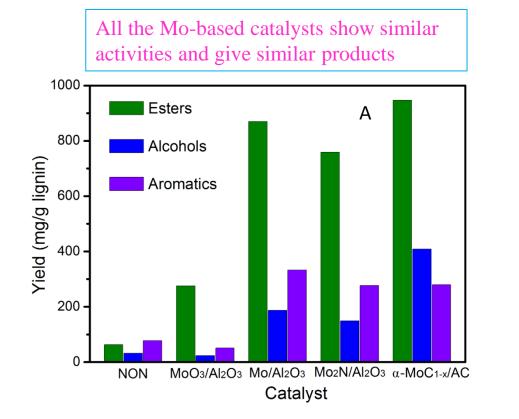
Ethanol is the most efficient solvent for Kraft lignin conversion

Products	Solvent				
	ethanol	water	methanol	isopropanol	
О-	4	14	3	17	
О-	35	3	8	2	
О-	16	11	5	5	
О_	23	8	2	4	
other aromatics	202	9	2	3	
alcohols	409	-	<u> </u>	-	
esters	949	-	-	-	

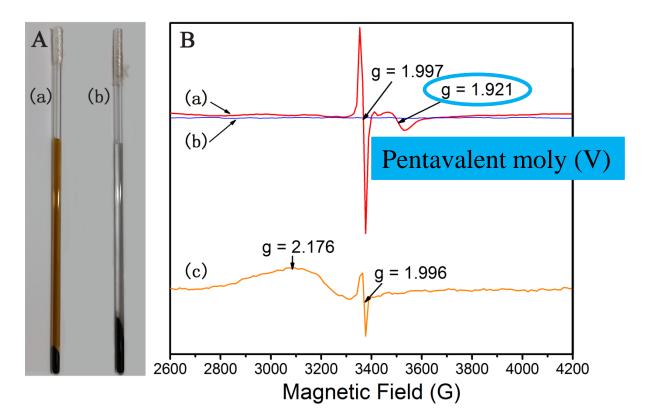
Proposal of the reaction mechanism

- **\$**

MALDI-TOF-MS profiles of various substrates:

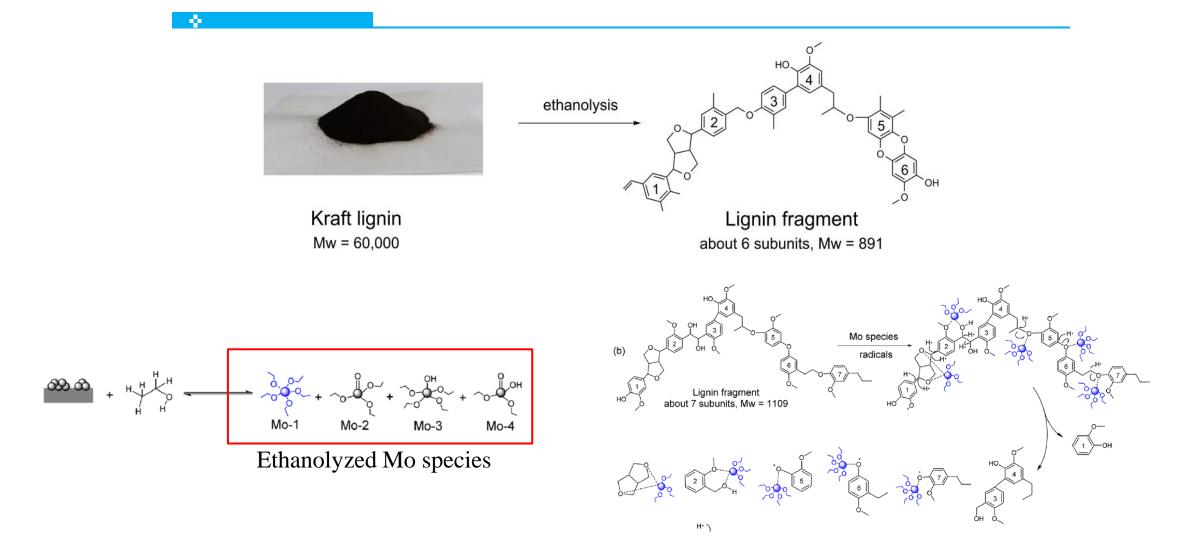

- (a) Kraft lignin treated in supercritical ethanol without catalyst,
- (b) Kraft lignin treated in supercritical ethanol over the MoC_{1-x}/AC catalyst.

Angew. Chem. Int. Ed., 2014, 126, 7438-7443


7

Proposal of the reaction mechanism

- ÷



Liquid product yields of lignin conversion over different Mo-based catalysts

EPR spectra of (a) used Mo/Al₂O₃ catalyst, (b) fresh Mo/Al₂O₃ catalyst and (c) Kraft lignin.

Proposal of the reaction mechanism

ACS Catal., 2015, 5, 4803–4813

Literature Review:

Part 2: Catalytic depolymerization of enzymatic hydrolysis lignin (EHL)

EHL

- **•** -

Lignin source: Corncob

Component	Lignin	Carbohydrate	Ash
Mass content (wt%)	91.2	0.12	0.59

Elemental analysis of EHL

С	Η	Ν	S	0
61.29%	6.69%	0.98%	0.01%	29.61%
Cl	Na	р	Fe	Si

Catalytic ethanolysis of EHL without H₂

Yiel No Yiel No Structur Yiel No Yiel Structure Structure Structure d d d 14 1 ~ он 39.4 7 1 3.1 13 но 5.3 19 он 5.4 2 10 12 18 14 16 Time (min)

WO_3/γ -Al₂O₃ catalyzed EHL ethanolysis at 320 °C under 0 bar N₂

No char is formed

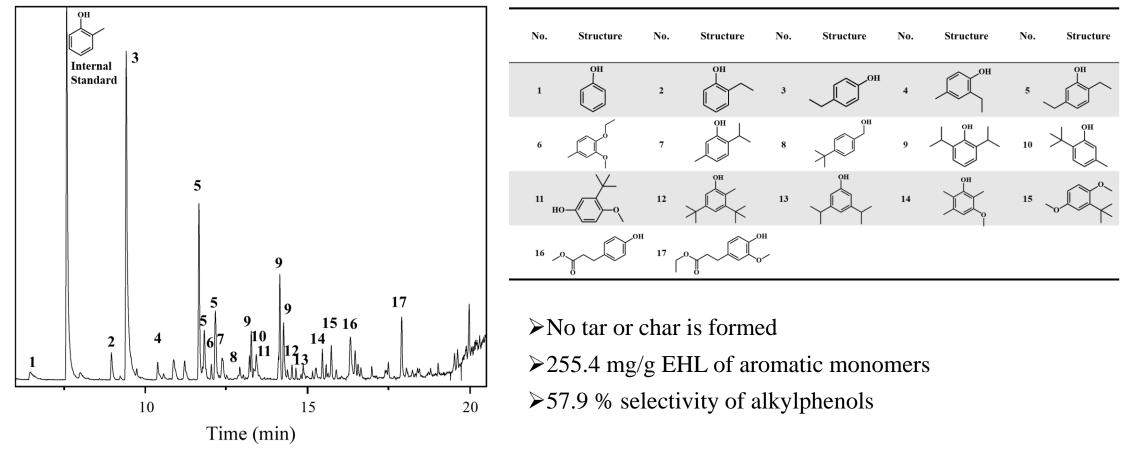
High yield of aromatic products (315.8 mg/g EHL with 36.3% alkylphenols)

Catalytic solvolysis of EHL over WO_3/γ -Al₂O₃

Product yield and distribution over different catalysts

				Yield (mg/g EHL)				
En	ntry	Catalyst	Solvent	Aromatic Aromatic Overal Phenolic Compounds		Overall Aromatic		
				Ethers	Esters	I I I I I I I I I I I I I I I I I I I	Compounds	
	1	WO ₃	Ethanol	51.1	43.6	123.3	218.0	
	2	H_2WO_4	Ethanol	23.1	11.5	128.3	169.1	
-	3	γ -Al ₂ O ₃	Ethanol	19.3	2.4	43.7	65.5	
4	4	WO_3/γ - Al_2O_3	Ethanol	32.9	26.3	245.2	315.8	
-	5	WO_3/γ - Al_2O_3	Methanol	16.2	3.5	160.2	179.6	
(6	WO_3/γ - Al_2O_3	Isopropanol	26.8	5.7	96.0	128.2	

 \blacktriangleright The WO₃/ γ -Al₂O₃ catalyst gives highest yield


Ethanol gives higher aromatic product yield than other alcohols \succ

13

- **\$**

Catalytic ethanolysis of EHL with H₂

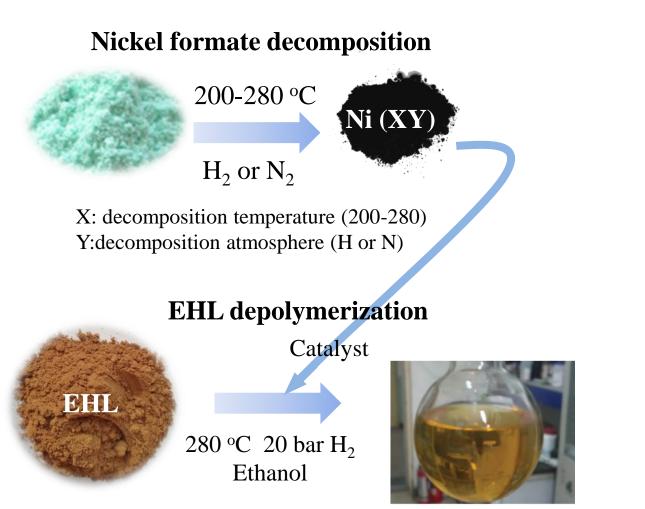
Reaction condition: NiMo/y-Al₂O₃, ethanol solvent, 320 °C, 30 bar H₂, 7.5 h

Abundance

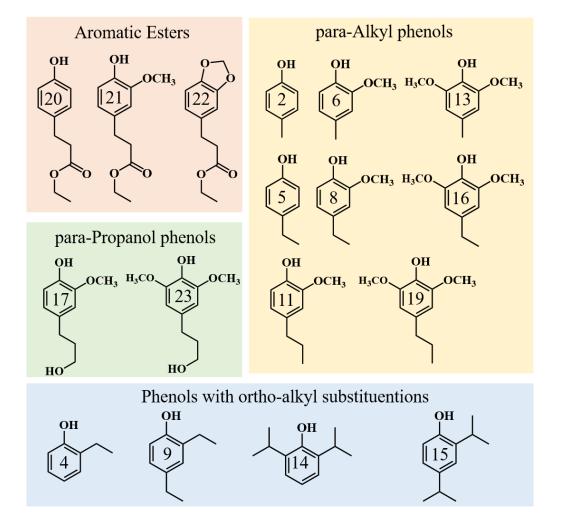
Energy Fuels, 2019, 33, 8657-8665.

- 🔶

Catalytic solvolysis of EHL over NiMo/γ-Al₂O₃


The yields of liquid products obtained from EHL depolymerization over different catalysts.

Entry	Catalyst	Overall Aromatic yield (mg/g EHL)	Alkylphenol yield (mg/g EHL)
1	γ-Al ₂ O ₃	62.4	59.8
2	Ni/y-Al ₂ O ₃	102.8	17.7
3	Mo/γ - Al_2O_3	127.9	120.8
4	Mixture of Mo/γ-Al ₂ O ₃ and Ni/γ-Al ₂ O ₃	164.7	121.7
5	NiMo/γ-Al ₂ O ₃	255.4	147.9

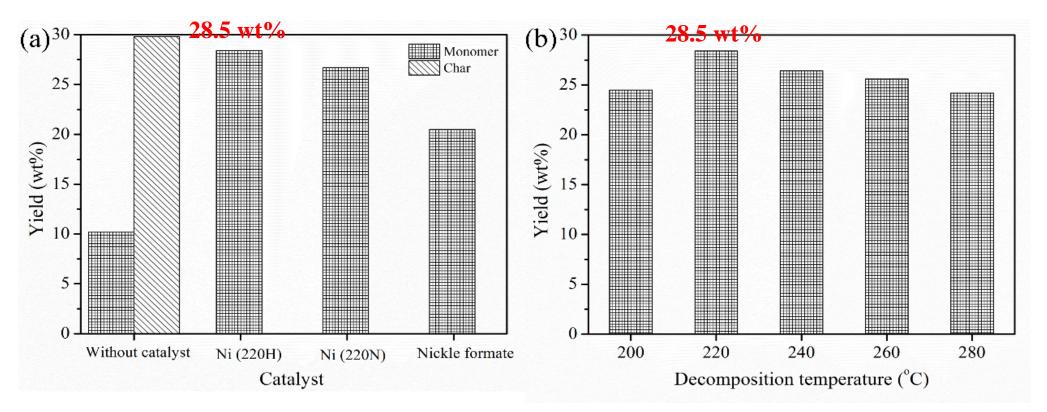

> The NiMo/ γ -Al₂O₃ catalyst exhibits much higher activity than other catalysts

- Ø.

Catalytic ethanolysis of EHL with H₂

Product distribution

EHL is completely liquified


Ind. Eng. Chem. Res. 2020, 59 (16), 7466-7474.

- **4**-

Catalytic ethanolysis of EHL with H₂

•

The effect of (a) catalyst and (b) decomposition temperature of nickel formate.

- High yield of Char was obtained in reaction without adding catalyst
- ▶ Highest phenolic monomer yield of 28.5 wt% was achieved with Ni (220H)

Ind. Eng. Chem. Res. 2020, 59 (16), 7466-7474.

17

Catalytic depolymerization of EHL in cyclohexane

Reaction condition: 320 °C, 30 bar H₂, 7.5 h, cyclohexane

Entry	Catalyst	Atmosphere	Element	Element content (wt%)		
			Carbon	Hydrogen	Oxygen	Value (MJ/kg)
1^{a}	_	_	61.29	6.69	29.61	25.0
2	NiMo/ γ-Al ₂ O ₃	H ₂	85.78	14.22	_	49.3
3	NiMo⁄ γ-Al ₂ O ₃	N ₂	77.57	7.43	15.00	34.1

^a EHL feedstock without treatment.

- **0**-

Bioresource Technology 323 (2021) 124634

After reaction catalyzed with NiMo/Al₂O₃ under H₂

- > The O in monomers was completely removed
- > The heating value was significantly improved

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006744. The content presented in this document represents the views of the authors, and the European Commission has no liability in respect of the content.

Waard Davey de from Eindhoven University of Technology also contribute to these slides