EHLCATHOL

Production de bio-carburants par solvolyse catalytique de la lignine

Etude expérimentale et numérique des performances de ces biocarburants en combustion

<u>Nicolas Delort</u>, Ismahane Meziane, Roda Bounaceur, Olivier Herbinet, Jérémy Bourgalais, Frédérique Battin-Leclerc

SFGP 2022 – Mardi 8 Novembre 2022

http://ehlcathol.eu/

- II. Propriétés générales des biocarburants
- III. Etude en combustion
- IV. Conclusion et Perspectives

Membres du projet

Equipe au LRGP

DALAS

Biocarburant de Seconde Génération

Valorisation de l'EHL

Notre contribution

Caractérisation expérimentale et modélisation de la combustion et des émissions

http://ehlcathol.eu/

II. Propriétés générales des biocarburants

- III. Etude en combustion
- IV. Conclusion et Perspectives

II. Propriétés générales des biocarburants Composition

¹ Battin-Leclerc, Delort et al., Catalysis Today (2022)

II. Propriétés générales des biocarburants Propriétés des composés

Espàcos	PCI		PON	CN	ρ	T _{évap}	
Especes	MJ/kg MJ/L		KUN	CN	kg/m³	K	
benzène	40.3	34.5	102 ± 5	14	855	353	
toluène	40.9 ± 0.4	35.3	116 ± 10	6 ± 3	862	383	
o-xylène	40.9 ± 0.1	35.6	113 ± 8	8	870	417	
m-xylène	41.4 ± 0.6	35.4	122 ± 21	7	855	412	
p-xylène	41.5 ± 0.5	35.2	121 ± 18	6	849	411	
ethylbenzène	41.6 ± 0.4	35.6	108 ± 8	6	855	409	
1,2,3-trimethylbenzène	41.2	36.7	110 ± 9	10	891	449	
1,2,4-trimethylbenzène	41.2	35.1	148	9	857	442	
1,3,5-trimethylbenzène	41.2	34.7	138 ± 45	8	842	438	
phénol	31.3	33.3			1065	455	
catéchol	27.7	37.2			1344	519	
benzaldéhyde	32.1	32.5			1014	452	
o-crésol	32.7	33.6			1028	464	
m-crésol	32.8	33.8			1030	475	
p-crésol	29.6	33.7	153		1140	475	
anisole	33.7 ± 0.3	33.0	114 ± 10	6 ± 1	980	427	
benzyl alcool	34.6	36.0		29	1041	478	
o-guaiacol	27.5	31.0		19	1129	478	
2-phényléthanol	35.0 ± 1.4	35.6	116 ± 11	8	1021	493	
4-méthylanisole	34.4	33.3	104	7	969	448	
Essence	≈ 43	30.1-33.3	>95	~23	720-775	< 483	
Kérosène	> 42.8	32.3-36.1		≈ 30-50	750-840	< 573	
Diésel	≈ 42	34.4-35.5		>51	820-845	< 653	

Excellentes performances en moteur à allumage commandé Limite ou au-delà des standards

Battin-Leclerc, **Delort** et al., Catalysis Today (2022)

II. Propriétés générales des biocarburants

III. Etude en combustion

IV. Conclusion et Perspectives

III. Etude en combustion Outils et grandeurs d'intérêt

Machine à compression rapide

Tube à onde de choc

Brûleurs

Réacteur parfaitement agité

Réacteur tubulaire

Délais d'auto-inflammation

Vitesses de flamme

Profils d'espèces

- I. Le projet EHLCATHOL
- II. Propriétés générales des biocarburants
- III. Etude en combustion

1. Mesures de vitesses de flamme

- 2. Modélisation en chimie détaillée
- IV. Conclusion et Perspectives

• <u>Définition</u> : vitesse de propagation du front de flamme relativement aux gaz frais

10

 <u>Intérêt</u> : Grandeur fondamentale (laminaire et adiabatique) Validation des modèles cinétiques chimiques

¹ Wang et al., Combustion and Flame 184 (2017) 312–323

III. 1. Mesures de vitesses de flamme Conditions d'étude

Espèces	T _{ambiante}	358 K	398 K
Toluène	\odot	\odot	\odot
o-, m-, p- xylène	×	\odot	\bigcirc
Styrene	×	\odot	\odot
1.2.4-, 1.3.5-trimethylbenzène	*	\odot	\odot
Anisole	×	\odot	\bigcirc
Benzaldéhyde	×	×	\bigcirc
o-, m-, p- crésol	×	×	\bigcirc
Guaiacol	×	×	\bigcirc
Benzyl alcool	×	×	
2-phényl éthanol	×	×	
Phénol	×	×	\bigcirc

∠CH3

III. 1. Mesures de vitesses de flamme Le brûleur à flamme plate

¹ Bosschaart and De Goey, Combustion and Flame 136 (2004) 261–269 ² Dirrenberger (thèse, 2014)

III. 1. Mesures de vitesses de flamme Résultats

- I. Le projet EHLCATHOL
- II. Propriétés générales des biocarburants
- III. Etude en combustion
 - 1. Mesures de vitesses de flamme

2. Modélisation en chimie détaillée

IV. Conclusion et Perspectives

III. 2. Modélisation en chimie détaillée Introduction

Mécanisme réactionnel

Données thermodynamiques et de transport

!\REACTIONCLASS: \RH_R_ABSTRACTION !	A/	/N	\EA
CH4+H<=>CH3+H2	6.140E+005	2.500	9587.0
CH4+0<=>CH3+0H	1.020E+009	1.500	8600.0
CH4+0H<=>CH3+H20	5.830E+004	2.600	2190.0
CH4+H02<=>CH3+H202	1.695E+001	3.740	21010.0
CH4+CH302<=>CH3+CH302H	9.600E-001	3.770	17810.0
CH3+H02<=>CH4+02	1.160E+005	2.230	-3022.0

Loi d'Arrhénius :

$$k(T) = A.T^n.e^{-\frac{Ea}{RT}}$$

Vitesse de réaction [mol.s⁻¹]

 $\frac{\partial X_i}{\partial t}$ [mol.s⁻¹]

Polarité Diffusivité

Enthalpie $\Delta_f H(T)$

Entropie S(T)

Capacité calorifique $C_p(T)$

III. 2. Modélisation en chimie détaillée COLIBRI

V3:

¹ Burke et al., Combustion and Flame 165 (2016) 125–136. ² Yuan et al., Combustion and Flame 162 (2015) 3–21. ³ Kukkadapu et al., Proceedings of the Combustion Institute 37 (2019) 521–529.

CH.

OH

III. 2. Modélisation en chimie détaillée Analyses

Toluène et Xylènes

 $H + O_2 \rightarrow OH + O$ accélératrice

Analyse de sensibilité du toluène (A1CH3)

Richesse	1
Conversion du fuel	50%

17

III. 2. Modélisation en chimie détaillée Analyses

Analyse de sensibilité du benzaldéhyde (A1CHO)

18

III. 2. Modélisation en chimie détaillée Analyses

- I. Le projet EHLCATHOL
- II. Propriétés générales des biocarburants
- III. Etude en combustion

IV. Conclusion et Perspectives

IV. Conclusion et Perspectives

Propriétés du biocarburant

- Cas d'utilisation
- Manque de données sur les propriétés d'auto-inflammation → IA

Modélisation

- Développement et validation du modèle COLIBRI
- Analyse des mécanismes réactionnels

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

F. Battin-Leclerc a, , N. Delort , I. Meziane , O. Herbinet , Y. Sang , Y. Li

Expériences

- Développement d'une base de données sur la combustion des aromatiques

 profils d'espèces en RPA
 - vitesses de flamme
- Amélioration des dispositifs expérimentaux
- Etude, en flamme, de mélanges représentatifs du biocarburant final

Merci de votre attention !!!

Pour suivre l'avancée du projet 👉 http://ehlcathol.eu/

This work has received funding from the European Union's Horizon 2020 research and innovation program, (BUILDING A LOW-CARBON, CLIMATE RESILIENT FUTURE: SECURE, CLEAN AND EFFICIENT ENERGY) under Grant Agreement No 101006744.

<u>Typical case :</u> p-xylene at T_{fresh gas} = 358 K / 85°C

- Plate K-thermocouples **~ 35-50 %** of ε_{total}
- $\epsilon_{\text{relative}} \approx 5\%$ in the middle of ϕ range
 - rockets in very lean mixtures (≈15%)

Données thermodynamiques

 02
 RUS 890
 2
 0
 0G
 200.000
 6000.00
 1000.00
 1

 3.66096065E+00
 6.56365811E-04-1.41149627E-07
 2.05797935E-11-1.29913436E-15
 2

 -1.21597718E+03
 3.41536279E+00
 3.78245636E+00-2.99673416E-03
 9.84730201E-06
 3

 -9.68129509E-09
 3.24372837E-12-1.06394356E+03
 3.65767573E+00
 0.0000000E+00
 4

			2 8				
02	Phase : Gas	Composition :	2 of 0 🔻				
1000.0K to 6000.0K	3.660961	0.000656	-1.411496E-7	2.057979E-11	-1.299134E-15	-1215.97718	3.415363
200.0K to 1000.0K	3.782456	-0.002997	9.847302E-6	-9.681295E-9	3.243728E-12	-1063.94356	3.657676

Heat Capacity (C_p⁰):
$$c_p^0 = R(a_1 + a_2T + a_3T^2 + a_4T^3 + a_5T^4)$$

Enthalpy (H_T⁰): $H_T^0 = RT\left(a_1 + \frac{a_2T}{2} + \frac{a_3T^2}{3} + \frac{a_4T^3}{4} + \frac{a_5T^4}{5} + \frac{a_6}{T}\right)$
Entropy (S_T⁰): $S_T^0 = R\left(a_1\ln T + a_2T + \frac{a_3T^2}{2} + \frac{a_4T^3}{3} + \frac{a_5T^4}{4} + a_7\right)$

http://ehlcathol.eu/

Annexes Modèles existants pour les oxygénés

26

Kinetic model	Reactions/ species	Phenol	Catechol	Benzaldehyde	Anisole	Cresol	Benzylalcohol	Guaiacol	Phenylethanol
hankar 2017	2911/548	+		+		+	+		V
Nowakowska 2018	1601/233	+	+	+	V	+	+	V	
'uan 2019	2563/432	+	+	+	V	+	+	+	
Buttgen 2020	2757/484	+		+	V	+	+		
Pratali Meffei 2020	14332/368	V	V	V	V	+	+	V	
∕lergulhão 2021	9998/2368	+	+	+	V	+	+	+	
Chen 2021	2171/376	+		V		+	V		

V: species, for which the model, or a previous version was validated +: species only present in the mechanism.

Annexes Analyse toluène

Absolute Rate of Production A1CH3

A1CH3(+M)<=>A1CH2+H(+M) A1CH3(+M)<=>A1-+CH3(+M) A1CH3+OH<=>A1CH2+H2O A1CH3+O<=>A1CH2+OH A1CH3+H<=>A1CH2+H2 A1CH3+O<=>HOA1CH3 A1CH3+OH<=>C6H4CH3+H2O A1CH3+OH<=>HOA1CH3+H A1CH3+02<=>A1CH2+H02 A1CH3+H<=>A1+CH3 A1CH3+O<=>OA1CH3+H C3H3+C4H6<=>A1CH3+H A1CH3+H<=>C6H4CH3+H2 A1CH3+O<=>C6H4CH3+OH P-CH3A1CH2+O<=>A1CH3+HCO A1CH3+0<=>C5H5CH3+CO O-CH3A1CH2+O<=>A1CH3+HCO A1CH3+OH<=>A1OH+CH3

Analyse de sensibilité du toluène

A1CH2+HO2=A1CH2O+OH A1CH2+CH3(+M)=A1C2H5(+M) A1CH3+H=A1CH2+H2 HCO+M<=>H+CO+M CO+OH<=>CO2+H A1CH2+O=A1CH2O A1CH3+H=A1+CH3 A1CH3+OH=C6H4CH3+H2O O2+H<=>O+OH A1CH3(+M)=A1CH2+H(+M)

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

27

Annexes Analyse benzaldéhyde

0,06

0,08

Analyse de sensibilité du benzaldehyde

A1O+H=C5H6+CO A1-+O2=A1O+O HCO+O2<=>CO+HO2 A1CHO+O=A1CO+OH HCO+M<=>H+CO+M C5H4O+H=C4H5-N+CO C0+OH<=>CO2+H A1CHO+OH=A1CO+H2O A1CHO+H=A1CO+H2

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

28

